

Design and Construction of Route 86 over Table Rock Lake

March 14, 2024

Agenda

Final design

Questions

Project location

Consultant project team

No net fill within various pool zones

SW Corner

Pool Zone Elevations (NGVD 29) 881 – 915 915 – 931 931 – 936

Site access for construction

Vertical alignment

Horizontal alignment alternatives

Horizontal alignment alternatives

Horizontal alignment alternatives

Daily road user costs \$194,618

Horizontal alignment alternatives

1. Avoid impacts to property in northwest corner of bridge site

2. Less desirable for access on east side of the bridge

Preliminary design

Preliminary design

Preliminary span layouts

LAKE PIER ON ADJACENT ALIGNMENT

SOUTH ALIGNMENT

SOUTH ALIGNMENT

86 DNG CREEK BRIDG

Final span layout

• Preliminary typical section with future sidewalk

86

PROPOSED

Value engineering performed during preliminary phase.

Unit 2

• Preliminary typical section with future sidewalk

 Bearings were offset on the expansion bents so a large dead load moment was not induced into the drilled shafts from the corresponding vertical load from each of the adjacent units.

Bent 8 Cap Plan

- One value engineering item discussed was to post-tension the superstructure to the substructure at the top of the tall intermediate bents which changes the fixity condition.
- If utilized, the end condition of the tall bents would shift from a flagpole condition (e) toward some degree of framed fixity between (e) and (d).
- Final design followed LRFD 5.6.4.1: KL/r <100 and designed by the approximate procedure for evaluation of slenderness

Flagpole Condition

Buckled shape of column is shown by dashed line	(a)	(b)				(f)
Theoretical K value	0.5	0.7	1.0	1.0	2.0	2.0
Design value of K when ideal conditions are approximated	0.65	0.80	1.0	1.2	2.1	2.0
End condition code	掌掌∼□∽⊶	Rotation fixed Rotation free Rotation fixed Rotation free		Translation fixed Translation fixed Translation free Translation free		

Partial Fixity Condition (Overlain on Flagpole Condition)

LRFD Table C4.6.2.5-1: Effective Length Factors, K

BURNS MGDONNELL

 Horizontal and vertical curvature in conjunction with the superelevation in Unit 1 required stepped and sloped top flanges in the Type 6 girders.

GIRDER DIMENSIONS AT MID SPAN

86) NG CREEK BRIDO

- Unit 2 girder webs 10'-6" deep
- Grade HPS 70W flanges over the piers

FRAMING PLAN - SPAN (5-6)

86

- Bent 6 drilled shaft
- Bottom of cap 925.25 (NGVD 29)
- Frequent lake levels near ~ 920 hindered the option of a lower strut.

- Cap over columns would have resulted in an excessively wide cap
- Pedestals allowed for bearing height
 adjustments and construction tolerances

- Rock slope with minimal overburden
 - Rock must be benched to prevent casing from sliding down the hill.
- Minimal overburden
 - Permanent casing may be seated 3 – 5 feet into rock for bottom stability.

BURNS MEDONNELL.

ELEVATION OF DRILLED SHAFT

- Picking 11.5' diameter casing 134.5' in length
- Rough template with spuds
- Fine template

 Buoyancy tube used to reduce weight of casing which reduces load on the drill as it seats the casing

- Airlift performed to get debris out of the bottom of the rock socket prior to video inspection of the rock socket
- Rebar cage installed using the chandelier/ wind chime method

- Drilled shaft concrete placement operation
- As the water rises inside the casing it discharges through the pipe and exits ~20' below the water surface elevation

