

I-86/I-15 System Interchange Lessons Learned: Drilled Shaft Construction

Presented by:

Morgan McArthur, PE Associate Geotechnical Engineer Larry Sant, PE Associate Geotechnical Engineer

 \mathcal{O}

March 2024

 \mathcal{O}

In Memory of the project's Geotechnical Lead:

Braydan DuRee, PE Principal Geotechnical Engineer 1983–2023

Project Overview

- One of Idaho's largest and most expensive construction projects (\$111.9M)
- Replaces the entire three leg interchange in Pocatello, Idaho
- 8 New Bridges and 10 MSE retaining walls (Existing bridges built in 1960s)
- Summer 2022: Construction Started
- Summer 2025: Anticipated Completion

Previous Condition

Proposed Reconstruction

MT

Boise ≼

The Details: Bridges and Drilled Shafts

- Two-Span Steel Girder Bridges
- 6'-6" (2.0m) Diameter, 50' Drilled Shafts (as designed)
- 5'-0" "Diameter" Column
- Constructed using Oscillator Method
 - Caving risk and boulders anticipated at project site
- 10' Permanent Casing at Top
- I6 Drilled Shafts 800 feet total
- Static Bi-Directional Load Test to Optimize Shaft Design

Bridge Layout

Bridge Layout

Subsurface Conditions

Drilled Shafts

Drilled Shafts

Drilled Shaft Design - Structural

- Designed using AASHTO LRFD Bridge Design Specifications
- Seismic Zone 2 Force Based Design (S_{D1} = 0.26)
- RSA analysis in Larsa4D
- Drilled Shaft Diameter effects included in RSA
- Critical Bridge in accordance with ITD Policy
 - R Factor of 3.5 applied to column demands
 - R Factor of 1.0 applied to shaft demands
- Extreme Event II CT controlled column design
- Extreme Event I Seismic controlled shaft design

Drilled Shaft Design - Geotechnical

- Designed using AASHTO LRFD Bridge Design Specifications
- Axial resistance reduced for collapsible loess soils

Drilled Shaft Design - Geotechnical

Lateral fixity often controls embedment for shafts in granular soils

Lateral

Axial resistance controlled the design embedment

		Minimum Drilled Shaft Length (feet) ¹	Estimated Drilled Shaft Length (feet) ²
Bridge	Shaft Location	6.5' Diameter Shaft	6.5' Diameter Shaft
I-15 SB over Ramp EN	Pier 1	40	57
I-15 NB over Ramp EN	Pier 1	40	52
I-15 SB over Ramp NW	Pier 1	38	53
I-15 NB over Ramp NW	Pier 1	41	57

Axial

Drilled Shaft Size Change

- During Bidding driller concerned with concrete cover on shaft
- Oscillator casings are ~2" thick
- Recommended 2.2m
 (7.2') shaft diameter

Drilled Shaft Size Change -Considerations

- What sizes are available?
 - Confirmed with numerous drillers to that the 2.2m size is common.
- Does the design still work?
 - Bigger is not always better.
- How much time do we have?
 - Wanted to release addendum in time to prevent pushing bid opening.
- How do the quantities/pay items change?
 - Paid for the drilled shafts by the foot.
- How involved are the changes on the plans?
 - Able to cloud/redline changes in Bluebeam, plan changes took a few hours at most.

Lessons Learned: Drilled Shaft Size Change

- Use more cover on drilled shafts (6" preferable)
 - Allows for more tolerance with cage placement
 - Cover requirements added to ITD Bridge Design Manual
- Change during bid advertisement was uncomfortable
 - Better to be uncomfortable than deal with a major change order or construction issue
- WSDOT has excellent guidance for drilled shaft cage diameters and cover for oscillating casing

GEOENGINEERS

- Table 7.8.2-2 in the WSDOT Bridge Design Manual

Table 7.8.2-2 Expected Reinforcing Cage Diameters and Clear Cover										
	Nominal (Outside) Metric Casing Diameter		Maximum Reinf. Cag to Accor Metric	n (Outside) e Diameter nmodate Casing ¹	Inside Diameter of Metric Casing ²	Nominal Ca:	(Outside) № sing Diamet	letric Slip ær ³	Cage Clearance Below Slip Casing	Cage Clearance at Slip Casing ⁴
	Meters	Feet	Inches	Feet	Inches	Inches	Feet	Meters	Inches	Inches
	3.73	12.24	130.52	10.88	140.52	137.52	11.46	3.49	8.16	3.0
	3.43	11.25	118.71	9.89	128.71	125.71	10.48	3.19	8.16	3.0
	3.00	9.84	101.81	8.48	111.84	108.81	9.07	2.76	8.15	3.0
	2.80	9.19	95.51	7.96	105.51	102.51	8.54	2.60	7.36	3.0
	2.50	8.20	83.70	6.98	93.70	90.70	7.56	2.30	7.36	3.0
	2.20	7.22	71.89	5.99	81.89	78.89	6.57	2.00	7.36	3.0
	2.00	6.56	64.02	5.34	74.02	71.02	5.92	1.80	7.36	3.0

Test Drilled Shaft

- One Sacrificial Test Shaft 60 ft. long
 - Bi-Directional Load Cell Test (Osterberg Cell)
- Gave ITD a high level of confidence
- Increased geotechnical axial resistance factors
 - Table 10.5.5.2.4-1 in AASHTO BDS
- Reduced length of production shafts *both* during design and construction

Side resistance in	sand β-method (Brown et al., 2010)	0.55
Tip resistance in	sand Brown et al. (2010)	0.50
Static Load Test (compression), φ _{load}	All Materials	0.70
Static Load Test (uplift), φ _{upload}	All Materials	0.60
MAKE	GEO GEO	ENGINEERS

DAF

Equivalent Shaft Top Load vs Displacement I-15 NB over Ramp EN Test Shaft 1

 Bi-directional load test resulted in a maximum equivalent top load of 5903 kips

Load		Service Li 1-inch of S	imit State Settlement	Nominal (Unfactored)		Strength Limit State	
Test Segment (Soil Layer)	Correlated Soil Type	Unit Side Resistance (ksf)	Unit End Bearing Resistance (ksf)	Unit Side Resistance (ksf)	Unit End Bearing Resistance (ksf)	Unit Side Resistance (ksf)	Unit End Bearing Resistance (ksf)
1	Soft to Stiff Silt	0.67	Not Applicable	0.71	Not Applicable	0.5	Not Applicable
2	Stiff to Very Stiff Silt	4.28	Not Applicable	4.35	Not Applicable	3.05	Not Applicable
3	Very Dense Sand and Gravel	3.74	33	3.90	78	2.73	54.6
4	Very Dense Gravel	4.28	33	3.56	78	2.49	54.6

TABLE 1. SIDE AND END BEARING UNIT RESISTANCE VALUES FROM LOAD TEST

- Bi-directional load test resulted in a maximum equivalent top load of 5903 kips for 60-foot shaft
 - Strength Limit state axial demand = 2560 kips

			Minimum Drilled Shaft Length (feet) ¹	Estimated Drilled Shaft Length (feet) ²
	Bridge	Shaft Location	6.5' Diameter Shaft	6.5' Diameter Shaft
Initial Analysis:	I-15 SB over Ramp EN	Pier 1	40	57
	I-15 NB over Ramp EN	Pier 1	40	52
	I-15 SB over Ramp NW	Pier 1	38	53
	I-15 NB over Ramp NW	Pier 1	41	57

Bridge	Min. Length for Lateral Stability (feet)	Min. Length for Axial Capacity (feet)	Recommended Minimum Shaft Length ¹ (feet)
I-15 NB Over Ramp EN	45	23	45
I-15 SB Over Ramp EN	45	25	45
I-15 SB over Ramp NW	45	20	45
I-15 NB over Ramp NW	45	20	45

Post-test:

- Test Shaft cost ~\$200,000
- Reduced all production shafts by 5'
 - Saved ~\$170,000 in production shaft costs
 - Does not include design savings with higher RF
- Value of increased confidence (\$\$\$?)

TIP & CSL Test Results

- TIP = Thermal Integrity Profiling
- CSL = Cross-Hole Sonic Logging
- Contract required both TIP and CSL testing
- Overall results were very good from both TIP and CSL testing
- Two shafts had questionable results – having both the TIP and CSL was beneficial to vetting issues

TIP testing indicated potentially lower quality concrete at a depth of 20-26ft.

CSL test results did not corroborate the potentially lower quality concrete between 20-26ft and gave good results.

- CSL results indicated signal loss in several of the waterfall diagrams
 - All relating to tube 4 in the top 10 feet

TIP testing did not corroborate this signal loss

I-86/I-15 System Interchange- I-15 NB Over Ramp EN

Shaft P1-3

GEOENGINEERS

- Water was not placed in CSL tube prior to concrete pour
 - This can cause debonding of the CSL tube to the concrete, which can result in signal loss
- CSL testing between other tubes did not agree with tube 4 results
- Shaft was accepted as is.

Drilled Shaft Location Issues

- Horizontal placement tolerance
 4.5" on plans
- NB over EN Bridge
 - Two Shafts out of location 7" & 11"

Drilled Shaft Location Issues

Drilled Shaft Location Issues – Considerations

Option 1 – Make the cap wider

Positives	Negatives
Easier to fit longitudinal rebar	Cap Rebar Changes
Bearing locations stay the same relative to cap	More Concrete = More Mass
More flexibility for column locations	More Analysis

Option 2 – Shift the entire cap

Positives	Negatives
Cap Rebar stays the same	Challenge to fit longitudinal rebar
Structure Mass and loads are similar	Bearing locations change relative to cap CL
Less Detailing Changes	Some Additional Analysis – Cap Torsion

Drilled Shaft Location Issues - Solution

- Contractor proposed option 2 (Cap Shift) with ITD's approval
- ITD Bridge ran reanalysis to confirm design still acceptable

Lessons Learned – Location Issues

- Design
 - Make future caps wider than 3" on each side of column
 - Increase allowable column placement tolerance within shaft, 4.5" was reasonable, but ITD specifications are normally 6"
- Construction
 - Double check survey survey as close to drilling date as possible
 - Potentially survey shaft cage before placing concrete
 - Work together to come up with solutions we are all on the same team

Summary of Lessons Learned

- Everybody makes mistakes
 - Don't be afraid of change
 - Act quickly problems don't age well
 - We are all on the same team
- CSL and TIP for confirmation
 - Water in CSL tubes
- Static load tests can pay off
 - Resistance factors
 - Optimizing design after test
 - Increased confidence
- Survey control during construction is critical
 - Teamwork can usually resolve minor issues in tolerance

Questions?

Extra Slides

Concrete Placement in Extreme Temperatures

ITD Concrete Specification

- Max Concrete Temp. 80° at time of placement
- Min Concrete Temp. 50° at time of placement
 - Max Internal Curing Temp.

	I-15/I-86 System IC Drilled Shaft Concrete Placement						
		Date	Air Temp	Concrete Temp	Max Internal Temps °F	Yards	
	Test Shaft 1	9.1.2022	94°	78°		90	
-	Drilled Shaft 1	10.25.2022	43°	52°	145°	73	
e B B	Drilled Shaft 2	10.31.2022	44°	55°	143°	60	
rid	Drilled Shaft 3	11.3.2022	28°	50°	146°	63	
B	Drilled Shaft 4	11.11.2022	26°	52°	146°	63	
2	Drilled Shaft 5	1.20.2023	17°	49°	195°	64	
e e	Drilled Shaft 6	1.23.2023	18°	53°	150°	65	
rid	Drilled Shaft 7	1.26.2023	24°	53°	120°	64	
	Drilled Shaft 8	1.28.2023	27°	53°	144°	64	

Hot Weather Concrete - Ice

- Test Shaft
 - Used Ice to cool down loads (400-1000lbs of ice used)
- Drilled Shafts 1-3
 - Used Ice to cool down loads (540-750lbs of ice used)
 - Placement in afternoon to night

Cold Weather Concrete - Flash Freeze

- Drilled Shaft #3
 - Ambient temperature at pour: 28°
 - Concrete Temperature: 50°
 - In place Concrete Temperature: 27°

Cold Weather Concrete – Lessons Learned

- Cold Weather Plan
 - Heat enough to where steel is warm but not too hot
 - Between a set of trucks, put heat back on.
 - Cover after placement and heat.

Concrete Cured -- How hot?

Concrete Cured --How hot?

Shaft P1-3

Cage View

Figure A3. Photographs of the polished section of Shaft 1A.

Petrographic Analysis Delayed Ettringite Formation (DEF)

Concrete Placement – Lessons Learned

- Internal Temperature Probes in the Center are Valuable
- Watch Steel Casing temperatures
- Temperature control is Key
- If something looks off, take the time to investigate

