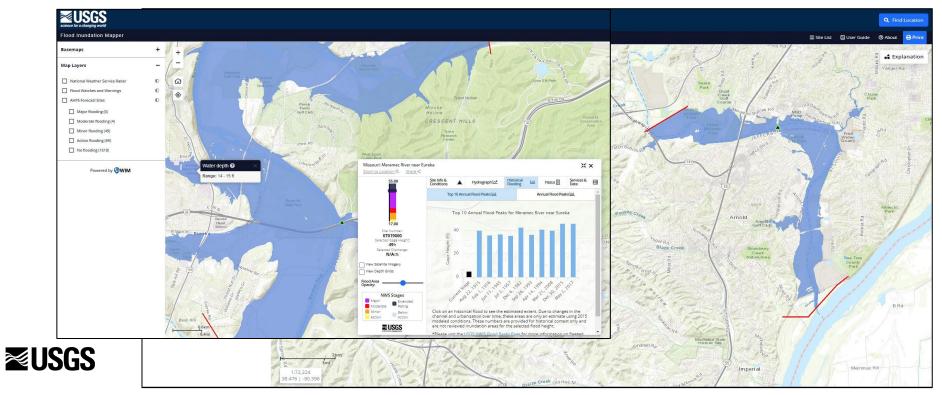


Deriving Flood Risk, Vulnerability, Loss Estimation, and Utilization of Statistical Applications for Decision and Regulatory Support from USGS products

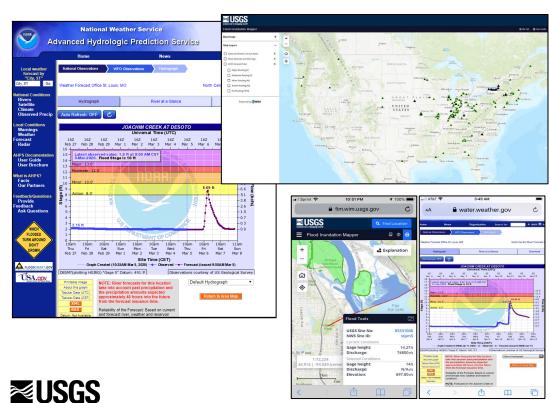
> U.S. Geological Survey – Central Midwest Water Science Center

Paul Rydlund - prydlund@usgs.gov

Chief: Hydraulics and Hydrology Supervisory Hydrologist Jason High - jhigh@usgs.gov Physical Scientist



U.S. Department of the Interior U.S. Geological Survey


USGS Flood Inundation Mapping Stage-Based Deterministic Inundation Mapping

https://fim.wim.usgs.gov/fim/

- Location Services
- Historic Flooding
- Flood Categories
- HAZUS Loss Estimation
- Backwater Considerations.

USGS Flood Inundation Mapping State of Missouri National Weather Service (NWS) Prediction

poeration with the City of Kansas City Mi Flood-Inundation Maps and Wetland Restoration Suitability Index for the Blue River and Selected Tributaries, Kansas City, Missouri, and Vicinity, 2012

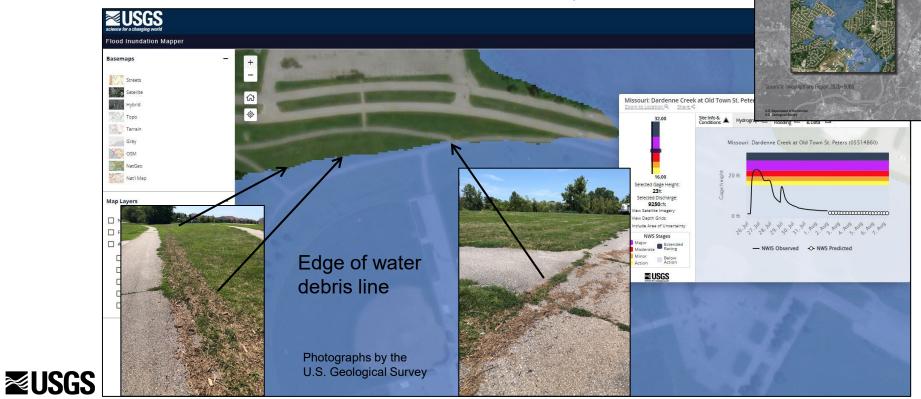
≥USGS

Prepared in cooperation with the U.S. Army Corps of Engineers. Metropolitan St. Louis Sewer District, Missouri Department of Transportation, Missouri American Water, Federal Emergency Management Agency Region 7, the city of Pacific, the city of Eureka, the city of Wildwood, and the city of Arnold

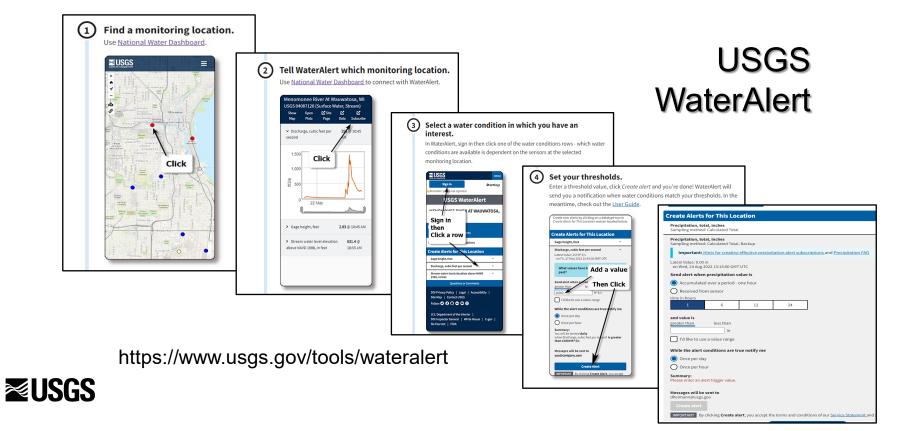
Flood-Inundation Maps of the Meramec River from Eureka to Arnold, Missouri, 2018

Scientific Investigations Report 2019-5004

IS Department of the Interio


https://pubs.er.usgs.gov/ USGS Flood Inundation Mapping publication/sir20205060 ≊USGS Local Evaluation Photographs by the U.S. Geological Survey Flood-Inundation Maps for Dardenne Creek in St. Charles County, Missouri, 2019 82 inches = 6.8 ftFlood Inundation Mapper Basemaps Streets Satellite ଜ Hybrid ø Торо Missouri: Dardenne Creek at Old Town St. Peters (05514860) E × oom to Location @ Share % Site Info & Hydrograph 🗠 Historical 🛄 Services 🛱 Missouri: Dardenne Creek at Old Town St. Peters (05514860) Water depth 🕑 5 20 ft 16.00 Selected Gage Height 23ft Selected Discharge Range: 6.5 - 7.5 ft 9250cfs View Satellite Imagery View Depth Grids Include Area of Uncertainty **NWS Stages** Major Major Moderate - NWIS Observed -O- NWS Predicted Minor Below Action **₩USGS ≥USGS** Photographs by the U.S. Geological Survey

USGS Flood Inundation Mapping Local Evaluation


https://pubs.er.usgs.gov/ publication/sir20205060 ≊USGS

County, Missouri, 2019

Flood-Inundation Maps for Dardenne Creek in St. Charles

USGS Notifications – Decision / Regulatory Support Enabling Text Message Alerts - Sensors and Data Dissemination

NWS Notifications – Decision / Regulatory Support Enabling Text Message Alerts - Hydrology

- Flood Statements and Warnings
- Flash Flood Watches, Statements, and Warnings

https://inws.ncep.noaa.gov/

INWS - Interactive NWS National Weather Service Mobile Decision Support Services (MDSS)

INWS MOBILE ALERTING

Receive customized text message and e-mail alerts for National Weather Service products that you care about.

Recent News

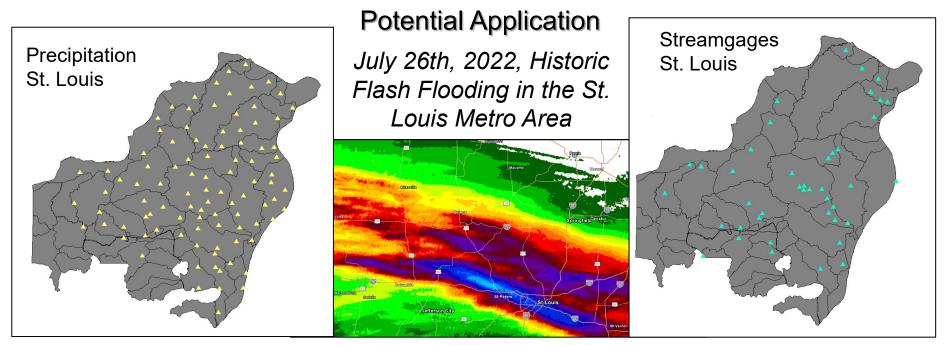
Welcome

InteractiveNWS (INWS) is the home of new mobile and desktop innovations of the National Weather Service. This application suite allows NWS partners to receive National Weather Service products in new and innovative ways, such as text messaging and mobile-enabled webpages. INWS strives to fulfill our mission of protecting life and property by using technology to reach out to our customers.

Note: If you are receiving alerts, but never signed up for them, they may be coming from a new FEMA public system called the Wireless Emergency Alerts (WEA). More information can be found at <u>Wireless Emergency Alerts Consumer Guide</u>

iNWS is an experimental service intended for NWS core partners: emergency managers, community leaders, other government agencies and the electronic media.

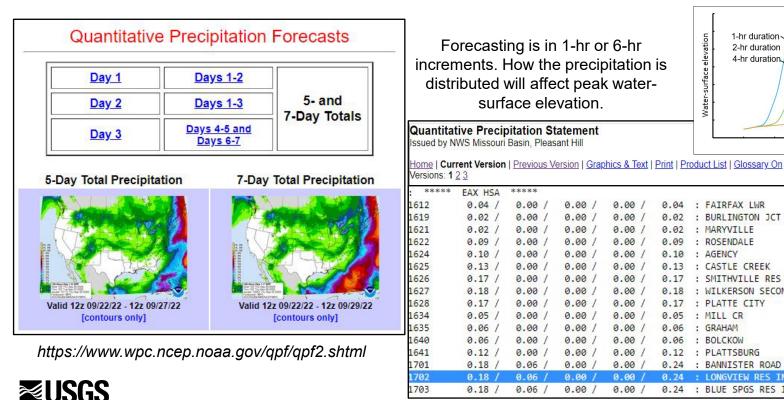
 DOC
 NOAA
 National Weather Service - iNWS Version 6.7.7

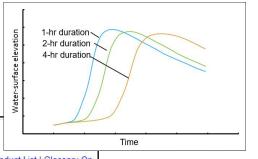

 Privacy Policy
 Terms of Use
 FOIA
 Information Quality
 Disclaimer
 Glossary
 Texting While Driving

USGS Flood Inundation Mapping Precipitation-Based Deterministic Inundation Mapping

	-										
Duration (hr.)			ncren	nental	Magr	nitude	(in)			STOT GRANDLER	£190.8
1	1.5	2.0	2.5	3.0	3.5						Viter depth Q 2 Regist 1 - 2 1
2	2.0	2.5	3.0	3.5	4.0	4.5			THE CITY OF		Provide Street And
4	2.0	2.5	3.0	3.5	4.0	4.5	5.0		HARRISONV		and the second second
6	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0			
		_					Prec	cipitat	tion Parameter(s):	about this	
							1 ho	ur		۲	5 39m 14,51 38,866 -94
							2 ho	urs		0	
		Ŧ	411-	1.	1		4 ho	urs		0	
Photogra U.S. Geo		ne 🔛					6 ho	urs -		\rightarrow	
Survey	logical		Ē	7 8				ours		Õ	
								ours		õ	
					4.				eshold Condition:	about this	
									r than (>)		
	20		-	A CARLES				ess th			
≊US (C L			and a					e a range (< or >)	Real-time v	value isgreater than: 6.0
		1-60	a a a a a a a a a a a a a a a a a a a	2-16.7					a range (> and <)		

USGS Flood Inundation Mapping Precipitation-Based Deterministic Inundation Mapping


https://www.weather.gov/lsx/July262022Flooding Multi-Radar Multi-Sensor (MRMS) 24hr Radar-Estimated Rainfall as of 12pm on July 26th.


≥USGS

1703

0.18 /

0.06 /

0.00 / https://forecast.weather.gov/product.php?site=NWS&issuedby=KRF&product=QPS

0.00 /

0.04

0.02 :

0.02

0.09

0.10

0.13

0.17

0.18

0.17

0.05

0.06 . GRAHAM

0.06

0.12

: FATREAX I WR

: MARYVILLE

: ROSENDALE

: CASTLE CREEK

: PLATTE CITY

: MILL CR

BOLCKOW :

: PLATTSBURG

0.24 : LONGVIEW RES INF

0.24 : BLUE SPGS RES INF

0.24 : BANNISTER ROAD

: AGENCY

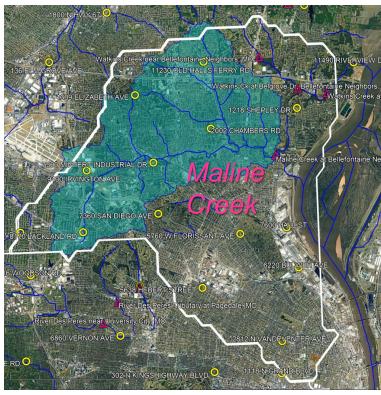
BURLINGTON JCT

: SMITHVILLE RES INF

: WILKERSON SECOND CR

ПОНВ	National Weather Service National Headquarters National Weather Service							
All Carlos	Home	Site Map	News	Organization	Search for:			
Local forecast by "City, St" or Zip Code	Quantitative Precipitation Statement Issued by NWS North Central River Forecast Center							
City, St Go		ersion Previous		t Only Print Prod	6-hour QPS			

6 – Hour Subbasin EADM7URB


.ER EADM7URB 20221109 Z DH1800/DC202211091435/PPQFM /DIH06 .E1 0.000/0.000/0.000/0.000/0.000/0.000/0.000/0.002/ .E2 0.000/0.000/0.000/0.000/0.000/0.000/0.000/0.000/ .E3 0.000/0.000/0.000/0.000/0.000/0.000/0.000/0.000/ .E4 0.000/0.000/0.000/0.000/

https://www.wpc.ncep.noaa.gov/qpf/qpf2.shtml

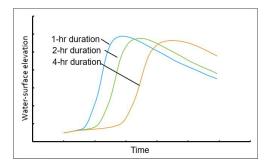
- Streamgages
- Precipitation Gages
- \sim Forecasting Subbasin Boundary

Image taken from Google Earth version 7.3.6

поня				ational Headq er Servic	
ALC: NOT	Home	Site Map	News	Organization	Search for:
Local forecast by "City, St" or Zip Code		titative Pr			nt
City, St Go		ersion Previous		t Only Print Prod	6-hour QPS

6 – Hour Subbasin EADM7URB

Response of 6-hr forecast values above threshold* are simulated and available for display


> * Identified based on simulated effects of both magnitude and duration

Example:

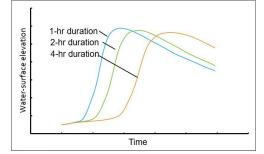
≈USG.

.E1 0.259/0.590/1.204/2.524/6.537/1.576/0.316/0.056

Hydrologic response determined for 1.2 inches distributed over 30 min, 1hr, 2hr, 3hr, 4hr, and 6 hr.

поня				ational Heado er Servic		
All and a second	Home	Site Map	News	Organization	Search for:	
Local forecast by "City, St" or Zip Code	Quantitative Precipitation Statement Issued by NWS North Central River Forecast Center					
City, St Go		ersion Previous		t Only Print Prod	6-hour QPS	

6 – Hour Subbasin EADM7URB


Response of 6-hr forecast values above threshold* are simulated and available for display

> * Identified based on simulated effects of both magnitude and duration

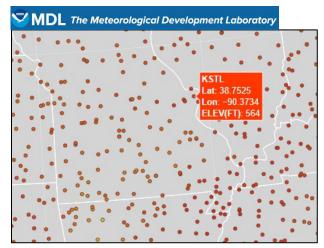
Example:

.E1 0.259/0.590/1.204/2.524/6.537/1.576/0.316/0.056

Hydrologic response determined for 2.5 inches distributed over 30 min, 1hr, 2hr, 3hr, 4hr, and 6 hr.

KSTL	NBM	V4.1 NBH	GUIDANCE	2/06/2023 1000 UTC	4:00AM
UTC	11 12	13 14 15	16 17 18 19	20 21 22 23 00 01 02 03 04 05 06 07	08 09 10 11
KSTL	NBM	V4.1 NBH	GUIDANCE	2/06/2023 1100 UTC	5:00AM
UTC	12 13	14 15 16	17 18 19 20	21 22 23 00 01 02 03 04 05 06 07 0	8 09 10 11 12
KSTL	NBM	V4.1 NBH	GUIDANCE	2/06/2023 1200 UTC	6:00AM
UTC	13 14	15 16 17	18 19 20 21	22 23 00 01 02 03 04 05 06 07 08 09	0 10 11 12 13
KSTL	NBM	V4.1 NBH	GUIDANCE	2/06/2023 1300 UTC	7:00AM
UTC	14 15	16 17 18	19 20 21 22	23 00 01 02 03 04 05 06 07 08 09 1	0 11 12 13 14
KSTL	NBM	V4.1 NBH	GUIDANCE	2/06/2023 1400 UTC	8:00AM
UTC	15 16	17 18 19	20 21 22 23	00 01 02 03 04 05 06 07 08 09 10 1	1 12 13 14 15

From 6-hour precipitation forecasts to 1-hour precipitation forecasts

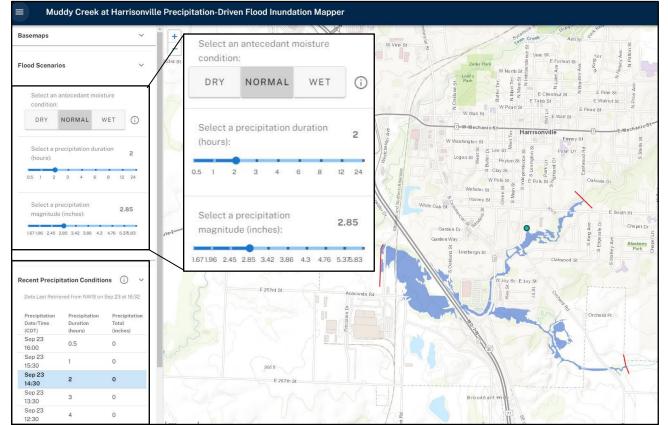


Why? How do we know where the bulk of the rain fell in 6 hours....

9:00AM...

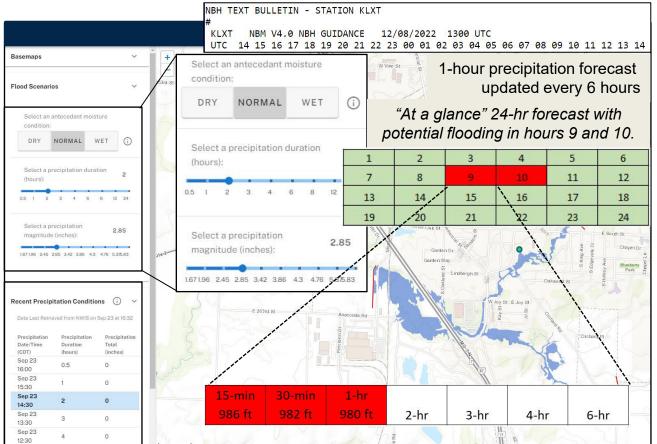
HOME FOR	ECAST	PAST WEATHER	SAFETY	INFORMATION	EDUCATION	NEWS	SEARCH	ABOUT
		of Models: Te			Meteo	ological D	evelopment _{Nati}	Laboratory onal Program, MDI
Itatistical Postproce	ssing Digi	ital Forecasts Verificati	on Storm Surg	e Decision Support	Tools Web Service	s NOAA VLa	b About MDL	
Attention	users	;						
Due to operationa	l constraint	s, this site only will pro					rcles: 01Z, 07Z,	132, 192.
Due to operationa Bulk text files for	I constraint	ts, this site only will pro	://nomads.ncep				rcles: 01Z, 07Z,	13Z, 19Z.
Due to operationa Bulk text files for	I constraint ALL CYCLE	ts, this site only will pro S are available at <u>https</u>	://nomads.ncep				rcles: 01Z, 07Z,	13Z, 19Z.
Bulk text files for Navigation	I constraint ALL CYCLE	ts, this site only will pro IS are available at <u>https</u> NBM Text Pr	oducts	noaa.gov/pub/data/	es may not be ava	a		

https://www.weather.gov/mdl/nbm_text ?ele=nbh,nbs&sta=klxt&download=yes


Precipitation-based Visualization for Decision and Regulatory Support

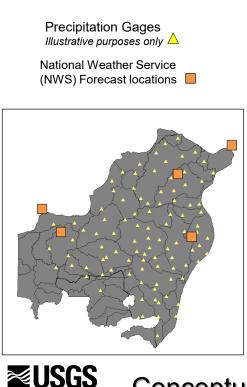
https://fim.wim.usgs.gov/fim/

Web Informatics & Mapping Web Informatics & Mapping Modern Web Development in support of delivering the best of the USGS to the public.


Precipitation-based Visualization for Decision and Regulatory Support Interactive and Automated

Precipitation Gages

National Weather Service (NWS) Forecast location KLXT


≊USGS Conceptual

Precipitation-based Visualization for Decision and Regulatory Support NBH TEXT BULLETIN - STATION KLXT

KLXT

Interactive and Automated

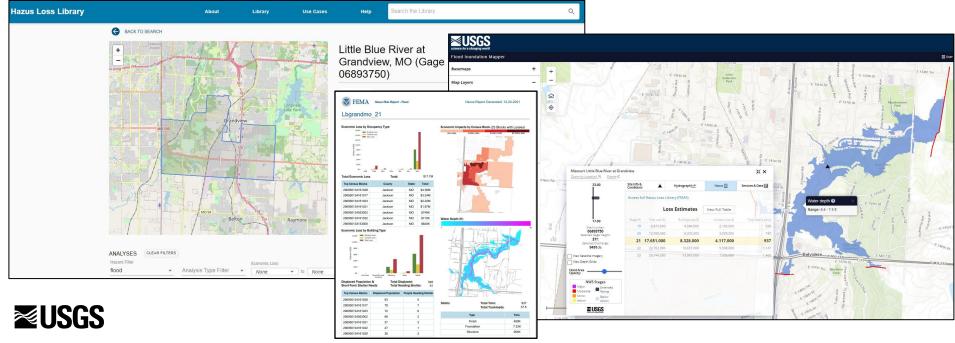

Conceptual

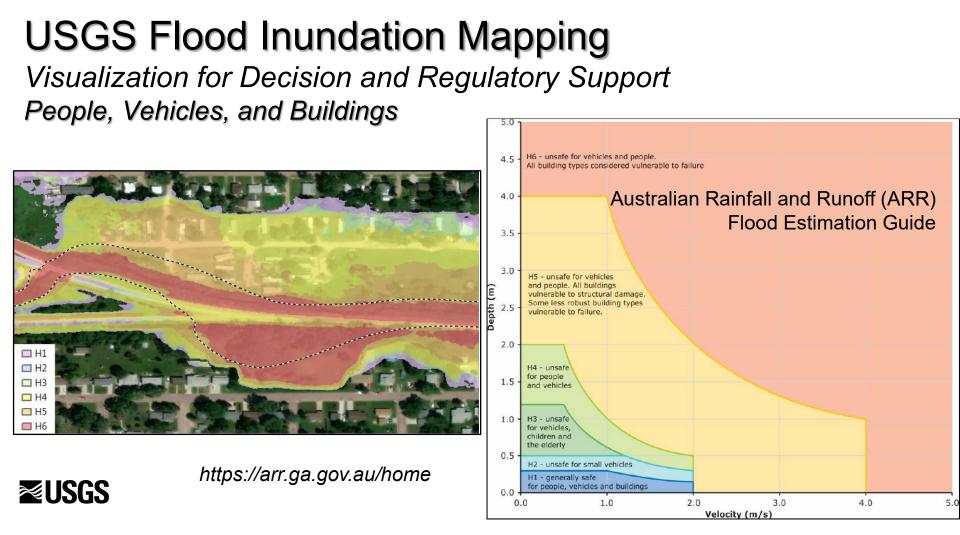
UTC 14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 Basemans Select an antecedant moisture 1-hour precipitation forecast W Vine St condition: updated every 6 hours Flood Scenarios DRY NORMAL WET "At a glance" 24-hr forecast with Select an antecedant moisture potential flooding in hours 9 and 10. NORMAL WET (1) DRY Select a precipitation duration 2 3 4 5 6 1 Select a precipitation duration 7 8 11 12 13 14 15 16 17 18 10 20 22 19 21 23 24 Select a precipitation 2.85 E South St Select a precipitation magnitude (inches): 2.85 Chapel magnitude (inches): Garden Dr 245 285 342 388 43 476 53583 Garden Way Lindbergh St 1.671.96 2.45 2.85 3.42 3.86 4.3 4.76 5.875.83 **Recent Precipitation Conditions** E 263rd S Data Last Retrieved from NWIS on Sep 23 at 16:32 Precipitation Precipitation Precipitation Date/Time Duration (CDT) (inches) Sep 23 0.5 0 16:00 Sep 23 0 15:30 1-hr Sep 23 2 0 14:30 2-hr 3-hr 4-hr 6-hr Sep 23 3 0 13:30 Sep 23 0 12:30

NBM V4.0 NBH GUIDANCE

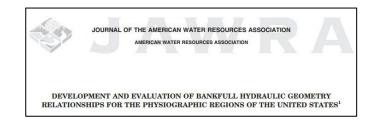
12/08/2022 1300 UTC

Precipitation-based Visualization for Decision and Regulatory Support Value-added Data Analytics


USGS Flood Inundation Mapping USGS – FEMA Partnership Loss estimation


HAZUS[®] EARTHQUAKE • WIND • FLODD • TSUNAMI

https://fim.wim.usgs.gov/fim/



USGS Streamstats

Core Function: Basin Characteristics => State-based Regional Regression Equations => Streamflow Statistics

https://streamstats.usgs.gov/ss/

≥USGS

Prepared in cooperation with the Missouri Department of Transportation and Federal Emergency Management Agency

Scientific Investigations Report 2014-5165

≈USGS

Methods for Estimating Annual Exceedance-Probability Discharges and Largest Recorded Floods for Unregulated Streams in Bural Missouri

Prepared in cooperation with the Metropolitan St. Louis Sewer District

in Urban Basins in Missouri

Estimation of the Magnitude and Frequency of Floods

C Deverting of the straight of

≥USGS

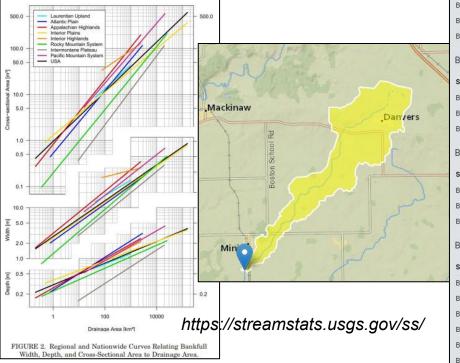
Prepared in cooperation with the Missouri Department of Natural Resources

Computed Statistics at Streamgages, and Methods for

Frequency Statistics at Ungaged Locations in Missouri

Estimating Low-Flow Frequency Statistics and Development of Regional Regression Equations for Estimating Low-Flow

Regression Based Scenarios
Peak-Flow Statistics
Low-Flow Statistics
Bankfull Statistics

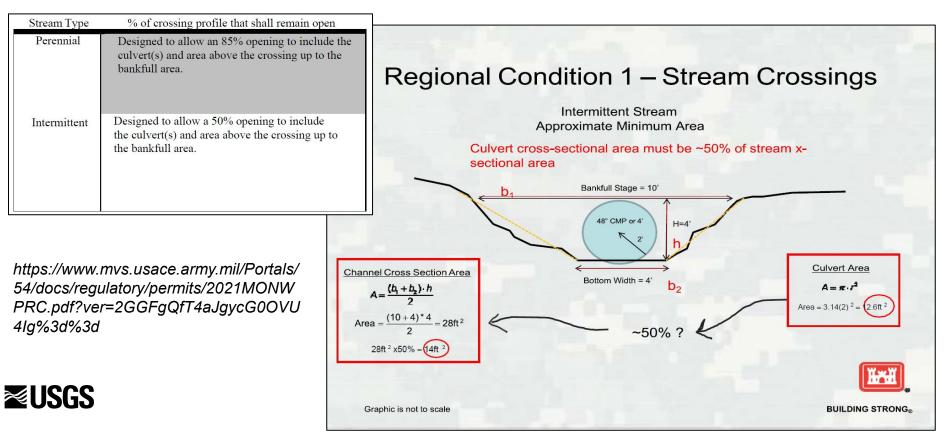

0

Maximum Probable Flood Statistics Basin Characteristics

USGS

Scientific Investigations Report 2010-5073

USGS Streamstats Customizations: Bankfull Statistics



 Bieger, Katrin; Rathjens, Hendrik; Allen, Peter M.; and Arnold, Jeffrey G.,2015, Development and Evaluation of Bankfull Hydraulic Geometry Relationships for the Physiographic Regions of the United States, Publications from USDA-ARS / UNL Faculty, 17p.

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	23.16	square miles	0.07722	59927.7393
Bankfull Statistics Flow	w Report [Interior Plains D Bie	eger 2015]			
Statistic				Value	Unit
Bieger_D_channel_width	n			35.3	ft
Bieger_D_channel_dept	h			2.73	ft
Bieger_D_channel_cross	s_sectional_area			95.1	ft^2
Bankfull Statistics Flow	w Report [Central Lowland P	Bieaer 2015]			
Statistic				Value	Unit
Bieger_P_channel_width				39.3	ft
Bieger_P_channel_depti				3,16	ft
Bieger_P_channel_cross				88.4	ft^2
Bankfull Statistics Flow	w Report [USA Bieger 2015]				
Statistic				Value	Uni
Bieger_USA_channel_wi	dth			37.4	ft
Bieger_USA_channel_de	pth			2.35	ft
Bieger_USA_channel_cr	oss_sectional_area			93.3	ft^2
Bankfull Statistics Flov	w Report [Area-Averaged]				
Darittan Otatiotico i lov					
Statistic				Value	
Bieger_D_channel_width	h			35.3	ft
Bieger_D_channel_width Bieger_D_channel_depti	h			35.3	ft
Bieger_D_channel_width Bieger_D_channel_depth Bieger_D_channel_cross	h h s_sectional_area			35.3 2.73 95.1	ft ft ft^2
Bieger_D_channel_width Bieger_D_channel_depth Bieger_D_channel_cross Bieger_P_channel_width	h h s_sectional_area h			35.3 2.73 95.1 39.3	ft ft ft*2 ft
Bieger_D_channel_width Bieger_D_channel_depth Bieger_D_channel_cross Bieger_P_channel_width Bieger_P_channel_depth	h h s_sectional_area h			35.3 2.73 95.1 39.3 3.16	ft ft ft^2 ft ft
Bieger_D_channel_width Bieger_D_channel_depth Bieger_D_channel_cross Bieger_P_channel_width Bieger_P_channel_depth Bieger_P_channel_cross	h h s_sectional_area h h s_sectional_area			35.3 2.73 95.1 39.3 3.16 88.4	ft ft ft^2 ft ft ft
Bieger_D_channel_width Bieger_D_channel_depth Bieger_D_channel_cross Bieger_P_channel_width Bieger_P_channel_depth	h h s_sectional_area h h s_sectional_area idth			35.3 2.73 95.1 39.3 3.16	ft ft^2 ft

USGS Streamstats

Customizations: Bankfull Statistics

Missouri Nationwide Regional Permitting Regional Conditions (2021)

USGS Streamstats - Iowa

Customizations: Flow Anywhere – Flow Duration Curve Transfer

Flow-Duration Statistics Flow Report [Statewide Flow Duration 2012 5232]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	ASEp
1 Percent Duration	1800	ft^3/s	23.5
5 Percent Duration	608	ft^3/s	23.6
10 Percent Duration	324	ft^3/s	24.2
15 Percent Duration	251	ft^3/s	24.6
20 Percent Duration	188	ft^3/s	22.1
30 Percent Duration	126	ft^3/s	17.1
40 Percent Duration	84.8	ft^3/s	14.9
50 Percent Duration	61.1	ft^3/s	16.4
60 Percent Duration	41.9	ft^3/s	22.1
70 Percent Duration	25.7	ft^3/s	32.4
80 Percent Duration	9.66	ft^3/s	40.1
85 Percent Duration	6.97	ft^3/s	42.5
90 Percent Duration	4.86	ft^3/s	51
95 Percent Duration	2.45	ft^3/s	74.9
99 Percent Duration	1.15	ft^3/s	

Flow-Duration Statistics Citations

Linhart, S.M., Nania, J.F., Sanders, C.L., Jr., and Archfield, S.A., 2012, Computing daily mean streamflow at ungaged locations in lowa by using the Flow Anywhere and Flow Duration Curve Transfer statistical methods: Geological Survey Scientific Investigations Report 2012–5232, 50 p.

https://streamstats.usgs.gov/ss/

USGS Streamstats - Colorado

Customizations: Peak flow for small basins/storm runoff tools

Implementation of TR-55 and Rational Methods

USGS Streamstats - Colorado

Customizations: Peak flow for small basins/storm runoff tools

Implementation of TR-55 and Rational Methods

https://streamstats.usgs.gov/ss/

Study Area Storm Event Runoff Summary		×	StreamStats	Peak Runoff from 24 Hour 100 Year Precipitation (TR55)	🛤 Report 😝 About 🤗 Help
	TRS	5 Rational Method	SELECT A STATE / REGION Colorado O V	Summary Peak runoff (cubic feet per second): Total infiltration (inches): 2.4	Layers
		1	Basin Delineated >	Total excess precip (inches): 2.49	Application Layers
Enter custom values below or Calculate Missing Parameter	Typical Runoff Coeffic	cient Table		Runoff hydrograph from 24 Hour 100 Year Precipitation Discharge (ft*/s) © Cum. precipitation (in) (right axis)	Regulation Points CO Map Layers
6 Hour 2 Year Precipitation	Rural Land Use	Lower Bounds	Upper Bounds	5 proc	✓ Oo Map Layers ✓
Precipitation Intensity (inches/hour)	Cultivated Land, Sand & Gravel Soils	0.25	0.35	a (0)	Niwot
0.5	Cultivated Land, Sandy Loam Soils	0.20	0.52	2 (P)	Mineral Rd.
Drainage Area (acres)	Cultivated Land, Clay & Silt Loam Soils	0.40	0.72	1 5 2,000	Boulder P
120	Cultivated Land, Tight Clay Soils	0.50	0.82		Boulder, Rd
	Pasture, Sandy Loam Soils	0.10	0.22	ତି ଦିନ କି ବି ବି ବି ବି ବି ବି ଦିନ ଦିନ ଦିନ ଦିନ ଦିନ ଦେଇ ଜେନ କି ବି	Appender Ha
Soil Runoff Coefficient (dimensionless)	Pasture, Clay & Silt Loam Soils	0.30	0.42	Tabular Hydrograph	Louisville
0.4	Pasture, Tight Clay Soils	0.40	0.60	Time DRNAREA P RCN Duration is S dP P-la PI Pe dPe Q	S PAR
	Meadow	0.10	0.50	00:00 15.7 0.00 76.48 24 0.615 3.08 0 -0.615 0 0 0 0 00:30 15.7 0.11 76.48 24 0.615 3.08 0.111 -0.504 0.111 0 0 0	A Long
	Woodland, Sandy Loam Soils	0.10	0.30	01:00 15.7 0.27 76.48 24 0.615 3.08 0.156 -0.349 0.156 0 0 0 01:30 15.7 0.44 76.48 24 0.615 3.08 0.171 -0.177 0.171 0 0 0	Aliport
	Woodland, Clay & Silt Loam Soils	0.30	0.50 2	02:00 15.7 0.61 76.48 24 0.615 3.08 0.174 -0.00381 0.174 0 0 0 02:30 15.7 0.78 76.48 24 0.615 3.08 0.171 0.167 0.162 0.00859 0.00859 725	A BASE STREET
	Woodland, Tight Clay Soils	0.40	0.60	03.00 15.7 0.95 76.48 24 0.615 3.08 0.167 0.334 0.143 0.0326 0.0241 2030 03.30 15.7 1.11 76.48 24 0.615 3.08 0.163 0.497 0.127 0.0691 0.0365 3080	
₩USGS	Bare Rock	0.82	0.94	04:00 15.7 1.27 76.48 24 0.615 3.08 0.162 0.659 0.115 0.116 0.0471 3980 04:30 15.7 1.43 76.48 24 0.615 3.08 0.161 0.82 0.105 0.172 0.0563 4750	24-1-1
	Desert	0.30	0.55	0500 15.7 1.60 76.48 24 0.615 3.08 0.161 0.981 0.0966 0.237 0.0648 5470 0530 15.7 1.76 76.48 24 0.615 3.08 0.162 1.14 0.0895 0.31 0.0724 6110	658190n & 93
		A	ccessibility FOIA Privacy Policy &	06:00 15.7 1.92 76.48 24 0.615 3.08 0.161 1.3 0.0826 0.388 0.0788 6650 06:30 15.7 2.08 76.48 24 0.615 3.08 0.161 1.47 0.0767 0.473 0.0846 7150	Golden some TABLE MOUNTAIN

<u>Goal:</u>

To give communities the ability to create a preliminary design for a new or existing stream crossing replacement.

Proposed MA Statewide Hydraulic Modeling Tool:

Help communities facilitate permitting of replacement projects that will meet Wetlands Protection Act requirements while minimizing associated adverse impacts.

Provide preliminary evaluation of hydrology and hydraulics and ecological conditions for potential replacements projects.

University	
Crossing Code Date Observed instances	Local ID Optional
A STATE OF THE OWNER	PAVED UNPAVED
ReadType MULTILANE GPS Coordinates (bound legres) 'N Lablade	
Location Description	
Crossing Type BRIDGE CULVERT MULTIPLE CULVERT FORD NO CROSSIN BURED STREAM INACCESSIBLE PARTIALLY INACCESSIBLE NO UPSTREAM CHAIN	INEL 📕 BRIDGE ADEQUA
Photo IDs INLETUPSTREAM	Sur
Flow Condition NO FLOW TYPICAL-LOW MODERATE HIGH Crossing G	andition OK PC
Tidal Site YES NO UNKNOWN Alignment FLOW-ALIGNED SKEWED	Road Fill Height Stre
Bankfull Width Davour Confidence HGH LOW/ESTIMATED Constrict	
Tallwater Scour Pool NONE SMALL LARGE	S FULL CHANNEL & BANK
Crossing Comments	
Outlet Shape 1 2 3 4 5 6 7 FORD LINKNOWN REMOVED	Outlet Armoning
Outlet Shape 1 2 3 4 15 6 7 FORD UNINXXIVI REMOVED Outlet Grade Proceed AT STREAM GRADE FREE Fall CASCADE FREE Fall FREE Fall CASCADE FREE Fall CASCADE FREE Fall CASCADE FREE Fall CASCADE FREE Fall FREE Fall CASCADE FREE Fall CASCADE FREE Fall CASCADE FREE Fall CASCADE FREE Fall FREE Fall CASCADE FREE Fall FREE	
Outlet Shape 11 2 16 7 COLOR Velocity FRANCE Outlet Grade Price 3 16 5 16 7 COLOR Velocity FRANCE Outlet Grade Price 3 3 5 FRANCE FREE FALL CASCADE FREE FALL <t< td=""><td></td></t<>	
Outlet Shape 2 3 4 5 6 7 6 Control Not	
Outlet Shape 11 2 16 7 COLOR Velocity FRANCE Outlet Grade Price 3 16 5 16 7 COLOR Velocity FRANCE Outlet Grade Price 3 3 5 FRANCE FREE FALL CASCADE FREE FALL <t< td=""><td>Outlat Armooring IO CASCADE CLOSE Midth</td></t<>	Outlat Armooring IO CASCADE CLOSE Midth
Oxfel Stage 1 2 1 <td< td=""><td>Outlist Armoning DD CASCADE COCC Middh E Abutment Reb EMOVED</td></td<>	Outlist Armoning DD CASCADE COCC Middh E Abutment Reb EMOVED
Outline Target 12 21 14 16 17	Outlet Annoise Do CASCARE CLOSE Mide
Outer Stage 2 <td< td=""><td>Outlet Annoise Do CASCARE CLOSE Mide</td></td<>	Outlet Annoise Do CASCARE CLOSE Mide
Outline Designer 12 16 16 17	
Outline Designer 12 16 16 17	Outskinssing Am Is Abscinet Not Corr Is Abscinet Not Corr OUT AND ON OWNERD Corr Is Abscinet Not Large
Outer Steps 2 <td< td=""><td></td></td<>	
Outlet Deeper 12 25 14 26 17	
Date Stope 12 16	
Date Stage 2	
Outlet Dage 12 16 16 17	

AQUATIC CONNECTIVITY

Develop elevation derived DEMs from Quality Level 2 (QL-2) lidar

urvey 16 culverts/bridges and associated stream channel elevations and complete ream crossing assessments

Complete NAACC stream crossing assessments in pilot watershed (UMass Amherst)

Compile a GIS aquatic habitat quality and connectivity restoration potential data ayers for stream crossing locations (UMass Amherst)

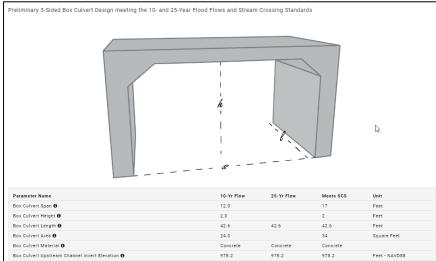
Develop hydraulic model runs for a selected MassDOT hydraulic design flow(s) and to meet the Massachusetts Stream Crossing Standards

Integrate the hydraulic modeling tool developed for the pilot watershed into the USGS StreamStats web application

Embedment

Banks, dry passage


Comparable depth and velocity, up & downstream


Summary:

≈USGS

- Site location
- North Atlantic Aquatic Connectivity Collaborative (NAACC)
- Aquatic habitat quality, stream connectivity restoration potential, and Maximum Extent Practicable (MEP) scores
- MassDOT highway functional classification and hydraulic design flow
- USGS peak flow and bankfull channel geometry equations
- Preliminary box, arch, and pipe culvert dimensions and relation to MRSCS

Parameter Name	10-Yr Flow	25-Yr Flow	Meets SCS	Unit
Box Culvert Span 🖲	12.0		17	Feet
Box Culvert Height	2.0		2	Feet
Box Culvert Length 🖲	42.6	42.6	42.6	Feet
Box Culvert Area 0	24.0		34	Square Feet
Box Culvert Material 0	Concrete	Concrete	Concrete	
Box Culvert Upstream Channel Invert Elevation 0	978.2	978.2	978.2	Feet - NAVD88
Box Culvert Downstream Channel Invert Elevation 0	977.2	977.2	977.2	Feet - NAVD88
Box Culvert Road Deck Elevation 0	981.7	981.7	981.7	Feet - NAVD88
Box Culvert Maximum Flow to Pass Through	10		10	Year
Box SCS Culvert Type 0	3-sided Box	3-sided Box	3-sided Box	
Box SCS Embedment 0	None	None	None	Feet
Box SCS Substrate 0	Natural	Natural	Natural	
Box Water Depth and Velocity Ratio 0				
Box SCS Span Ratio 0	0.9		1.2	
Box SCS Openness Ratio 0	0.60		0.8	

Hydraulic Model Citation

Massachusetts Department of Fish and Game, Division of Ecological Restoration, 2012, Massachusetts stream crossing handbook, 2nd edition, accessed August 1, 2021 at https://www.mass.gov/doc/massachusetts-stream-crossing-handbook/download.

Questions?

Thank you....

USGS Presentation Photos Teams Conference Circa 2007 ©

Paul Rydlund - prydlund@usgs.gov

Chief: Hydraulics and Hydrology Supervisory Hydrologist Jason High - jhigh@usgs.gov Physical Scientist

