

PRAIRIE ENGINEERS TODAY

OVERVIEW

CONTINUED GROWTH

(# of Employees (FTE))

PRAIRIE ENGINEERS TODAY

Depth and Breadth

GEOSPATIAL PROJECT LOCATIONS- PRIOR 12 MONTHS

Puerto Rico

MANNED vs. UNMANNED

A Direct Comparison of Results From An Aerial Lidar Mapping Project

• Scott Perkins, GISP – Prairie Engineers, P.C.

Scott Perkins, GISP m (913) 244-2609 sperkins@prairieengineers.com www.prairieengineers.com 2022 Best Firms to Work For at AEC Firms in North America: View Article 2022 Best Places to Work! Springfield Business Journal: View Article 2021 Best Places for Engineers to Work! ISPE: View Video

MANNED vs. UNMANNED

- Both are under the control of the FAA
 - Manned flight is restricted to above 1,000'
 - Unmanned is restricted to below 400'
- Both systems use Precision Navigation & Timing (PNT)
 - Airborne GPS/GNSS positioning
 - Inertial Measurement Unit (IMU) a gyroscope & accelerometers

The Project Southern IL abandoned mine

The Site

The Site

The Scope of Work

Work Order #16

Southern Illinois Construction Inspection Services AML-GSwE-2149

Attachment 1

- TASK I -The consultant shall perform all ground control services as necessary
- TASK II The consultant shall perform all aerial photographic services as necessary
 - The color digital photograph is to be a seamless photo of the entire site and not a mosaic photo.
- TASK III The consultant shall provide digital files of topographic mapping

ACCURACY STANDARDS

- The Lidar data is to be collected at and aggregate nominal pulse spacing (ANPS) of less than or equal to <0.35 meters (QL 0, which is <a>>8.0 ppsm)
- The required quality level is 0 for high density Lidar based on the U.S.G.S. specification.
- In addition, the accuracy standards shall meet the requirements of the American Society for Photogrammetry and Remote sensing (ASPRS) "Positional Accuracy Standards for Digital Geospatial Data"

Site Reconnaissance March 13, 2022

The Ground Control

Targets set on March 29

NAME	DESCRIPTION	NORTHING (Y)	EASTING (X)	ELEVATION (Z)
106	CHEVRON 1	476796.162	2559751.501	424.485
109	CHEVRON 2	476731.301	2556195.768	459.766
111	CHEVRON 3	476777.185	2558605.961	440.626
110	CHEVRON 4	476742.777	2557388.117	445.695
101	TARGET 5	477501.589	2556193.221	448.866
100	TARGET 6	477492.909	2557227.933	448.932
107	TARGET 7	477475.847	2558101.994	446.319
102	TARGET 8	476194.238	2557257.631	449.600
104	TARGET 9	476277.988	2557973.318	448.718
105	TARGET 10	476593.955	2559513.369	409.698
103	TARGET 11	476600.898	2557916.245	447.765
108	TARGET 12	477088.682	2557872.724	449.514

The Unmanned System

- FreeFly Alta-X drone
- True View 515 lidar Sensor
- Phase One megapixel camera

The Fundamental of Aerial Lidar

The Lidar Data One thin slice showing all lidar returns

The Lidar Data One thin slice showing filtered returns

The Lidar Data One thin slice showing over target feature – a rock

The Lidar Data

One thin slice showing over target feature – a bucket

The Lidar Data

One thin slice showing over target feature – a car tire

Scenario:

Two items were randomly placed in the area of interest without knowledge of the location other than these two images.

Cessna 206 and LiDAR Aircraft

Imagery was used to locate the bucket. While the bucket wasn't clear in the LiDAR Intensity coloring the LiDAR with RGB showed a possible item of interest.

Note: The elliptical scanner only received a few returns off the bucket. The returns can be inspected in the cross section view.

Cross Section of Suspected Bucket Area

Zoomed Cross Section of Suspected Bucket Area

Imagery that was collected on the LiDAR flight was used to locate the tire. The LiDAR Intensity does show the tire, if you know where to look.

Side by side comparison of the LiDAR and the imagery

NOTES

- •LiDAR point spacing and point density are critical when identifying small objects. Point density and point spacing do not necessarily correlate.
- •Target object reflectivity, laser origin height above terrain and beam divergence are critical when attempting to detect specific targets of interest.
- Multipulse beam returns in vegetated areas are essential in target detectability under canopy.
- Prior knowledge of target composition is critical.
- •Elliptical Scan, Line scan and rotating scanners have different limitations with regard to target detectability.

The Head-to-Head Comparison

	Unmanned	Manned		
	Bucket	Bucket	delta	
Easting	2557693.30	2557693.35	-0.06	
Northing	476933.52	476933.64	-0.12	
Elevation 437.49		436.37	1.13	
	Tire	Tire		
Easting	2559434.66	2559434.67	-0.01	
Northing	476732.41	476733.44	-1.03	
Elevation	409.35	409.56	-0.212	

The Head-to-Head Comparison on the blacktop road

Head-to-Head Comparison on the blacktop road sta. 4+00

Comparison on the blacktop road sta. 12+00

The Head-to-Head Comparison on the blacktop road

Head-to-Head Comparison on the blacktop road x-section

	RoadX-Xsec0+75.png		₿	ର ଅ	l 🛆	315			2	9	e,	Q	91%	5. 4 1
Fr	rom Pox 2558621.57, 476755.37											To Post 2	558596.78	476752.09
•	452.5 ±													
ŀ	450.0 ±													
ľ	447.5±													
	445.0 m													
ŀ	442.5 ±													
	a gana ayan a ay ananta ananta ka kata a ka kata aya a y		5	• • ~~	-		s centar		F158 14 15		** :		+ e.p.	
ł	140.0 #	š# 10.0#	1213		12.5 #	15.0	*	17.5±	20.0 tt		22	58		25.00 ft

The Ground Control

Head-to-Head Comparison on Target #1 on pavement

The Results

Quality	RMSEZ	NVA at the 95-percent	VVA at the 95-percent
Level	Non-vegetated (ft)	confidence level (ft)	confidence level (ft)
QL 0	≤0.164′	≤0.321'	≤0.492'
QL1	≤0.328'	≤0.643'	≤0.984'
QL2	≤0.328'	≤0.643'	≤0.984'
QL3	≤0.656'	≤1.286'	≤1.968'

Ground Control Test – Non-vegetated

NAME	DESCRIPTION	NORTHING (Y)	EASTING (X)	ELEVATION (Z)	CLOUD Z	Delta Z
106	CHEVRON 1	476796.162	2559751.501	424.485	424.612	-0.127
109	CHEVRON 2	476731.301	2556195.768	459.766	459.804	-0.038
111	CHEVRON 3	476777.185	2558605.961	440.626	440.642	-0.016
110	CHEVRON 4	476742.777	2557388.117	445.695	445.713	-0 <mark>,0</mark> 18
101	TARGET 5	477501.589	2556193.221	448.866	448.966	-0.100
100	TARGET 6	477492.909	2557227.933	448.932	448.832	0.100
107	TARGET 7	477475.847	2558101.994	446.319	446.372	-0.053
102	TARGET 8	476194.238	2557257.631	449.600	449.594	0.006
104	TARGET 9	476277.988	2557973.318	448.718	448.585	0.133
105	TARGET 10	476593.955	2559513.369	409.698	409.688	0.010
103	TARGET 11	476600.898	2557916.245	447.765	447.689	0.076
108	TARGET 12	477088.682	2557872.724	449.514	449.340	0.174

Vertical RMSE:	0.077	Note: Point 12 (108) was excluded
Note: Vertical NMAS/VMAS Accuracy (90% CI):	±0.126	from testing as target was
Vertical NSSDA Accuracy (95% CI):	±0.150	determined to not be flat on ground
ASPRS Vertical Accuracy Class:	0.077	and in heavily vegetated area.
Vertical Min Contour Interval:	0.231	

RMSEZ of 0.077' is less than or equal to 0.164', which meets or exceeds QL0 accuracy level.

MANNED vs. UNMANNED

Requires less ground control	Requires more ground control
Captures project in 1 photo	300+ individual photos to mosaic
Smaller data set (fewer lidar pts) ~9 ppm	Larger data set ~ 30 ppm
Fewer flight lines	Required multiple E-W and N-S lines

Thank you for your interest, any questions?

Scott Perkins, GISP m (913) 244-2609 sperkins@prairieengineers.com www.prairieengineers.com 2022 Best Firms to Work For at AEC Firms in North America: View Article 2022 Best Places to Work! Springfield Business Journal: View Article 2021 Best Places for Engineers to Work! ISPE: View Video

PRAIRIE ENGINEERS THANK YOU!

SCOTT PERKINS, M 913-244-2609 DARREN FORGY - M 217-553-0495