Steel Bridge Design & Fabrication

TEAM Conference

Branson, MO March 13, 2019

Anthony Peterson, PE NSBA – Bridge Steel Specialist, Central Region peterson@aisc.org 515-499-2029

National Steel Bridge Alliance A division of the American Institute of Steel Construction

www.steelbridges.org

Steel Bridge Topics

- Steel Plate and Rolled Beam Availability and Price
- Design Considerations
- Bridge Girder Fit
- Bridge Connection Details
- Steel Plate Girder Fabrication
- Bolted Splice Design
- NSBA Overview & Resources for Designers

Steel Plate and Rolled Beam Availability and Price

Steel Plate

• Structural Plate availability

Availability Intersection

• Structural Plate availability

Producer	Maximum Thickness (in)	Maximum Width (in)
Arcelor-Mittal	4	195
Nucor Steel	4	136
SSAB	3	120

* Approximately 700,000 tons of plate used annually for construction projects in the United States.

Steel Plate

• Structural Plate availability

Plate Availability Chart: Minimum Composite										
	Plate Width									
Plate Thickness	72"	78"	84"	90"	96"	102"	108"	114"	120"	
3/8"	972	972	972	972	972	800	972	972	750	
1/2"	972	972	972	972	972	972	972	680	680	
9/16"	972	972	972	972	972	972	972	680	680	
5/8"	972	972	972	972	972	960	960	680	680	
3/4"	1,100	1,100	1,100	1,100	1,100	1,030	980	680	680	
7/8"	1,100	1,100	1,100	1,100	1,100	1,030	980	680	680	
1"	1,100	1,100	1,100	1,058	992	933	882	680	680	
1-1/4"	1,100	994	907	846	793	747	705	668	635	
1-1/2"	1,077	828	756	705	661	622	588	557	529	
1-3/4"	924	710	648	604	567	533	504	477	453	
2"	808	621	567	529	496	467	441	418	397	
2-1/4"	718	552	504	470	441	415	392	371	353	
2-1/2"	646	110	453	423	397	373	353	334	317	
2-3/4"	588	452	412	385	361	339	321	304	288	
3"	539	414	378	353	331	311	294	278	264	

* A709-50 and A709-50W (Non-FC) Availability only.

Rolled Shapes

• Structural Shape availability

Rolled Shapes

- ASTM A992; ASTM A709, Grade 50S
 - Minimum Yield = 50 ksi.
 - No HPS

Producer**	Maximum Depth (in)	Length (ft)
Nucor-Yamato Steel	44	
Gerdau Ameristeel	36	120*
Steel Dynamics	36	

- * Maximum length for some beam sizes may be shorter.
- ** These mills account for over 90% of all wide flange shapes produced in the US

Rolled Shapes

• Structural Shape availability

e

SC VPN CRM	coay C	Google 🗊 Google News 🄇	9 Intell	icasi 👜 superrag	es 🧧 rwitter 🐧	Accumenter	· · ·	⊠ • ⊡ 🖨	- raye - Sale	-9		
STEEL	9							It's Our Na	ture:			
									4			
OME					_	_	_	_				
USTOMER LOGI	N											
RICE LIST												
OLLING/CASTIN	G	AL AL		We will accomplis		to Take Care Of safest highest of		most productive	and			
HED			ı,	nost profitable stee								
RDER BUDDY												
RODUCT LIST			or-Yai	nato Propos								.
RAP		Week Beginning		9-Feb	16-Feb	23-Feb	2-Mar	9-Mar	16-Mar	23 -M ar	30-Mar	
RCHARGE		NYS Fiscal Month		Feb	Feb	Feb	Mar	Mar	Mar	Mar	Mar	
LATED LINKS		NYS Fiscal Week		6	7	8	9	10	11	12	13	
WS ARCHIVE			1.0	roll wk/status/	roll wk/status/	roll wk/status/	roll wk/status/	roll wk/status/	roll wk/status/	roll wk/status/	roll wk/status/	Approximat
LESINFO	•		Prod.	cast date	cast date	cast date	cast date	cast date	cast date	cast date	cast date	Roll We
NERAL INFO	•	Wide Flange Sections	Mill					1202104 (160000)		ATTOCA DA MAN		
MMON LETTER	ls .	W44x16x230-335	2	05 0+								4/6-4/13
NTACTS	•	W40x16x199-431	2	05 Cast								4/6-4/13 \
		W40x12x149-327 W36x16.5x231-487	2	05 Cast	05 Cast							4/13-4/20
		W36x12x135-256	2	05 Cast	05 Cast 05 Cast			>>>>	10 O			4/13-4/20
UCK		W33x15.75x201-387	2		06 Cast			,,,,	10.0			4/13-4/20 4/13-4/20
NUTRUCK		W33x11.5x118-169	2		06 Cast				11 0			4/13-4/20
IERS		W30x15x173-391	2		06 Cast	06 Cast			110		-	4/20-4/27
		W30x10.5x90-148	2		>>>>	06 Cast			11 0	11 0		4/20-4/27
UP FOR EMAIL FICATIONS		W27x14x146-368	2			06 Cast			110	110		4/20-4/27
		W27x10x84-129	2			06 Cast			>>>>	11 0		4/20-4/27
		W24x12.75x104-370	2			07 Cast	07 Cast		>>>>	11 0		4/20-4/27
		W24x9x56-103	2			>>>>	07 2/19			12 0		4/27-5/4
		W24x7x55-62	1		07 Cast PS	07 Cast PS	30,000 M					4/20-4/27
		W21x12.25x101-275	2					09 0	09 O			5/11-5/18
		W21x8.25x48-93	1		>>>>	07 Cast PS						4/27-5/4
		W21x6.5x44-57	1			07 Cast PS	07 Cast PS				-	4/27-5/4 V

Design Considerations

- Rolled Beam vs. Plate Girder
 - Rolled beam generally more economical
 - Dependent on availability rolling schedules, etc
 - Allow plate girder alternate (show on bid documents)

Welded Plate Option Allowed

- For horizontally curved members with a radius less than 1,200'
- For members requiring camber greater than ¹/₄ of the depth of the member (e.g., 6" camber for a 24" deep member)
- If cover plates are required for the rolled beam option
- Length should be a consideration (over 60' length)
- Availability on short notice

- Girder Spacing
 - Wider is more economical
 - A reduced number of girders to be detailed, fabricated, coated, transported, erected, inspected and maintained
 - Fewer bolts, x-frames, bearings, and less welding
 - Stiffer structure with smaller relative girder deflection
 - Reduced out-of-plane rotations

- Use 10' to 13' with spans less than 175' (not a lot of appreciable difference in structural steel unit weight)
- Use 11' to 13' with spans greater than 175'

- Girder Spacing Considerations
 - Thicker deck may be required for larger spacings
 - Spacing larger than 13' may require stringers
 - Consider future redecking under traffic
 - Balancing loads for exterior and interior girders

- Minimum Thicknesses
 - Plate girder webs
 - 1/2" minimum
 - Plate girder flanges
 - 3/4" minimum
 - Stiffeners, connection plates
 - 1/2" minimum

- Thickness Increments
- -1/8" for plate up to $2\frac{1}{2}$ " thick
- -1/4" for plate over $2\frac{1}{2}$ " thick
- Width Preferences
- Fabricators prefer 72" and 96" widths
- Cost increases with width

- Plate Girder Flange Sizing
 - Shop butt splices within a shipping piece when to change area?
 - No more than 2 butt splices or 3 different flange thickness for an individual flange between field splices
 - Flange Thickness
 - 1/8 " increments up to $2\frac{1}{2}$ "
 - 1/4" increments over 21/2"
 - Maximum change; thinner piece at least 1/2 of thicker...
 - <u>ONLY</u> when material cost saved > labor cost spent

Flange Sizing – when to change area?

Multiply weight savings/inch x flange width (length of butt weld)									
Thinner Plate	Thicker Plate at Splice (inches)								
at Splice (inches)	1.0	1.5	2.0	2.5	3.0	3.5	4.0		
1.0	70	70	70						
1.5		80	80	80	80				
2.0			90	90	90	70	70		
2.5				100	100	80	80		
3.0					110	90	90		
3.5						110	110		
4.0							130		

Weight Saving Factor Per Inch of Plate Width

for ASTM A709-Gr 50 Non-Fracture Critical Flanges Requiring Zone 1 CVN Testing

- Plate Girder Flange Sizing
 - Shop butt splices within a shipping piece how to change area? width or thickness?
 - Keep width constant (i.e., to change cross section area, change thickness)
 - WHY ?
 - compare changing width vs. changing thickness

FABRICATE 4 FLANGE ASSEMBLIES

STEP 1: Bevel (4) plate edges

STEP 2: Burn 12 pieces from 3 plates

STEP 3: Fit up and tack weld 4 flange assemblies

STEP 4: Attach 16 run-off tabs

STEP 5: Weld and grind 8 splices

STEP 6: Turn over 4 flange assemblies

STEP 7: Back gouge, weld and grind 8 butt joints

Flange Sizing - change width

STEP 8: Remove and grind 16 run-off tabs, taper wider plates

CHANGE THICKNESS

STEP 1: Bevel (4) and taper (2) plate edges

STEP 2: Fit up and tack weld 3 plates

STEP 3: Attach 4 run-off tabs

STEP 4: Weld and grind 2 splices

STEP 5: Turn over 1 piece

STEP 6: Back gouge, weld and grind 2 butt welds

STEP 7: Remove and grind 4 run-off tabs

STEP 8: Burn 4 flanges from 1 assembly

STEP 8: Burn 4 flanges from 1 assembly

Plate Girders

- Flange Sizing
 - Width transitions increase <u>labor</u> for flange assemblies up to 35%
 - If you must change flange width, do so at bolted field splice (do not clip corners of top flanges)
 - Allow fabricators to eliminate splices within a shipping piece by carrying thicker material through to next designed splice location

Bridge Girder Fit

Skewed and Curved I-Girder Fit Guide

- What is Fit?
- Common Fit Conditions
- Customary Practice
- Recommended Fit Conditions
- Special Considerations
- Design and Analysis
- Conclusion

- Straight bridges where one or more support lines are skewed more than 20 degrees from normal;
 Horizontally curved bridges where one or more support lines are skewed more than 20 degrees from normal and with an L/R in all spins less than or equal to 0.03; and
- Horizontally curved bridges with or without skewed supports and with a maximum L/R greater than 0.03.

where L is the span length bearing to bearing along the centerline of the bridge and R is the radius of the centerline of the bridge cross-section.

Girder Fit

- The "Fit Decision"
 - Affects design decisions regarding rotation demands on the bearings.
 - Affects internal force effects for which the cross-frames and girders must be designed.
 - Allows Fabricator/Detailer complete shop drawings and successfully fabricate the bridge components.
 - Allows Erector/Contractor assemble the steel and achieve the desired geometry in the field.

- Differential Dead Load Deflections
 - Skewed girder example
 - Phased construction
 - omit crossframes between phases, if possible
 - otherwise, single angle top & bottom strut (w/ 1 bolt)

Δ = DIFFERENTIAL DEFLECTION

STAGE 2

STAGE 3

Bridge Connection Details

- Bearing Stiffeners/Diaphragms, Connection & Intermediate Stiffeners
- Welding
- General Details

Bearing Stiffeners/Diaphragms, Connection & Intermediate Stiffeners

- Bearing stiffeners can be either fabricated normal to top flange or vertical (plumb) under full dead load (DL) – there is no clear benefit one way or the other
- Connection (and intermediate) stiffeners should be normal to top flange

Bearing Stiffener Attachment

- mill to bear fit on bottom flange
 - add a fillet weld (if transversely loaded)
- <u>NO</u> Complete joint penetration (CJP) weld
- AWS D1.5 tolerances for fit between underside of bottom flange and bearing sole plate (projected area of bearing stiffeners and web)

Bearing Stiffeners

Pipe Option for Skewed Girders

Connection Stiffener Attachment

- attach to top and bottom flanges
- welds to tension flanges ARE ALLOWED as long as the live load stress range does not exceed the allowable fatigue stress
- if needed, use bolted tab plates ONLY at the specific location, not at all connection plates
- good placement of connection plates should eliminate need for any tab plates

Connection Stiffener Attachment

•Bolted Tab Plate (NOT RECOMMENDED)

Skewed Cross Frame Connections

20° maximum skew

preferred (by fabricators)

Skewed Cross Frame Connections

Give the fabricator the option to use either a skewed connection or bent gusset plates.

Skewed Cross Frame Connections

Rolled beams

- Connection stiffener alternate for rolled beams
 - AASHTO requirements revised in 2011 to allow 'bolted clip angle' for intermediate diaphragms – see 6.6.1.3.1

prnate channels are permitted to facilitate erial acquisition. Calculated weight of ictural steel is based on the lighter section. he alternate, if utilized, shall be provided to extra cost to the Department.

INTERIOR DIAPHRAGM CONNECTIONS

Plate Girders

- General Details
 - Intermediate Stiffeners weld to compression flange, tight fit (per AWS D1.5) to tension flange (not required, but may help fabricator to control flange tilt)

- General Details
 - Cross Frame design

Plate Girders

- General Details
 - Curved Plate Girders
 - heat curve / cut curve
 - Rolled Beams
 - cold camber OK

- To have the most competition:
 - Length < 80 feet
 - Weight < 40 tons
 - Height < 9 feet tall
- To ship by road, 'max'
 - Length < 175 feet
 - Weight < 90 tons

- Height < 13.5 feet (on side), < 9.5 feet (upright)
- Width < 16 feet

Steel Plate Girder Fabrication

Main Steps

- Preparation
- Girder Assembly
- Fit & Weld Components
- Laydown
- Cleaning & Painting
- Final Inspection
- Shipping

Raw Material

Burning

Shop Splicing (SAW)

Material Handling

Plasma Burning

Girder Assembly

Clamp & Tack Web to Flange (GMAW)

Web to Flange Continuous Welding

Web to Flange Continuous Welding

Fit & Weld Components

Inspection & Quality Control

Fit & Weld Components

Laydown – Vertical Assembly

Laydown – Horizontal

Laydown – Horizontal

Cleaning & Painting

Cleaning & Painting

Final Inspection

Erection & Placement

Bolted Splice Design

Field Erection

•Note 2 rows of bolts each side of web and 16 bolts each flange

- 1. New ASTM Bolt Specifications
- 2. Bolt Design
- 3. Standard Hole Sizes
- 4. Girder Field Splice Design

- New Specification Combines 4
 Specifications into 1 for both buildings and bridges-F3125
 - A325 Standard Hex Bolt
 - F1852 (A325 Tension Control)
 - A490 Standard Hex Bolt
 - F2280 (A490 Tension Control)
 - + Metric
- The old names become Grades

F3125

F3125 Significant Changes

- 1. Grade A325: $F_u = 120$ ksi for all diameters (results in an increase in shear capacity for bolts >= 1 in. and increase in required installation tension)
- 2. Annex A1- Table gives permitted coatings and over tapping required for nuts
 - No hot dip or mechanical galvanizing of Grade A490 bolts
 - F1136 and F2833 Zinc/Aluminum Allowed on <u>all</u>
 Grades Both A325 and A490

Slip Critical Connections

Class	Typical Surface	Slip Coefficient	
		Old Spec.	New Spec.
А	Mill Scale	0.33	0.30
В	Zinc-Rich Paint, Blasted, *Metalized	0.50	0.50
С	Galvanized	0.33	0.30
D	Organic Zinc- Rich Paint	-	0.45

*Unsealed metalized zinc or 85/15 zinc aluminum, sealed metalized coatings are not included.

Bolt Holes

- Hole diameter for bolts greater than or equal to 1" in diameter is increased to the nominal diameter of the bolt plus 1/8". This eliminates the need to field ream holes to fit large-diameter hot forged bolts, which have a longitudinal forging seam that interferes with holes 1/16" larger than the bolt diameter.
- Miss drilled holes- fill with fully tensioned high strength bolt (Category B fatigue strength).

Bolted Field Splices of Flexural Members

Remove applicability of the 75 percent and average rules in Article 6.13.1 to the design of bolted and welded splices for flexural members.

Revise general article on design of bolted splices for flexural members implementing new simplified bolted splice design procedure.

Removal of check for slip of bolts during erection of steel.

Simplified design procedure produces more economical field splice designs.

Splice Design Procedure

Design Flange Connection to Develop the Smallest Design Yield Resistance of the Connected Flanges.

$$P_{fy} = F_{yf}A_{e}$$

Design Web Connection to Develop the Smallest Factored Shear Resistance of the Connected Webs.

$$V_r = \phi_v V_n$$

Two Rows of bolts minimum on each side of splice.

Typical Girder Field Splice

Plate Girder Field Splice

Tub Girder Splice

Overview & Design Examples

Flange Splice Calculations

	A	В	С	D	E	F	G	Н	-			
	NSBA Bolted Splice Designer - Plate Girder								HEET			
1	FRUNCED 1985											
2	Flange Calculations											
3												
4	Load Combinations - Factored Moment											
5	-							-				
6	-		Comparison and	Mom	ent (kip-ft) T			-				
		Noncomposite Dead	Superimposed Composite Dead	Future Wearing	Desitive Live Lead	Negative Live Load plus						
7		Load (DC1)	Load (DC2)	Surface (DW)	Positive Live Load plus Impact (LL+ + I)	Impact (LL- + I)	Deck Casting					
8	Load Combination	248.00	50.00	52.00	2469.00	-1754.00	1300.00	Factored (kip-ft)	1			
_	Deck Casting	0.00	0.00	0.00	0.00	0.00	1.40	1,820.00				
	Strength I - Positive	1.25	1.25	1.50	1.75	0.00	0.00	4,771.25				
	Strength I - Negative	0.90	0.90	0.65	0.00	1.75	0.00	-2,767.50				
	Service II - Positive	1.00	1.00	1.00	1.30	0.00	0.00	3,559.70				
13	Service II - Negative	1.00	1.00	1.00	0.00	1.30	0.00	-1,930.20				
14	-											
15	Bolt Factored Shear Res	<u>sistance</u>										
16				1	1			1				
									R _r - C			
17	Location	Bolt Type	Bolt Area (sq-in)	K _h	φs	F _u (ksi)	P _t (kip)	R _r - Single Shear (kip)				
18	Flange	A325 - Excluded	0.6013	Standard	0.80	120	39.00	32.33				
19	-											
20	Bolt Nominal Slip Resist	tance										
21					-							
				R _n - Double Shear								
22	Surface Condition Factor (Ks)	Hole Size Factor (K _h)	P _t (kip)	(kip)								
23	0.50	1.00	39.00	39.00								
24					-							
25	25 Strength Limit State Design											
26								_				
							Filler Plate					
27	Location	F _v (ksi)	F _u (ksi)	0.84 (F _u /F _v)	Width (in)	Thickness (in)	Thickness (in)		-			
14	EULA Input Figures	📈 Design Result Summa	rv 🛛 🖌 Desian Check Su	mmary 🚽 Flange Splig	e Design 📈 Web Splice [Design 🧷 💭 🚺	4					

Web Splice Calculations

	A	В	С	D	E	F	G	н	
1	NSBA Bolted Splice Designer - Plate Girder NOTICE: DO NOT MODIFY THIS SHEET								ET
2				v	Veb Calculations				
3									
4 Lo	ad Combinations - Facto	red Shear							
5									
6					Shear (kip)				
			Superimposed						
		Noncomposite Dead	Composite Dead	Future Wearing	Positive Live Load	Negative Live Load			
7		Load (DC1)	Load (DC2)	Surface (DW)	plus Impact (LL+ + I)	plus Impact (LL- + I)	Deck Casting		7
8	Load Combination	-82.00	-12.00	-11.00	19.00	-112.00	-82.00	Factored Shear (kip)	-
	ck Casting	0.00	0.00	0.00	0.00	0.00	1.40	-114.80	-
	rvice II - Positive	1.00	1.00	1.00	1.30	0.00	0.00	-80.30	
11 Ser	rvice II - Negative	1.00	1.00	1.00	0.00	1.30	0.00	-250.60	
13 Bolt Factored Shear Resistance 14							R		
15	Location	Bolt Type	Bolt Area (sq-in)	Къ		F _u (ksi)	Pt (kip)	R _r - Single Shear (kip)	
16 We		A325 - Included	0.6013	Standard	φs 0.80	120	39.00	25.98	
17	-0	A323 - Included	0.0015	Standard	0.00	120	35.00	23,50	<u> </u>
	olt Nominal Slip Resistar	ice.							
19	in the second	100							
15				Slip Capacity -	1				
20	Faying Surface Class (K,)	Hole Size Factor (K _h)	P _t (kip)	Double (kip)					
21	0.50	1.00	39.00	39.00					
22									
23 Flange Design Results									
24									
25 Flange Moment Resistance Check Results									
26		H _w (kip)	Controlling]					
27 Pos	sitive	DNA		1					
28 Ne		DNA		1					
	EULA / Input / Figures /		Design Charles Summer			n 🐑 🔲	4		

Design Result Summary

	A	В	С	D	E	F	G
1	NSBA Bol	<u>ted Splice</u>	<u>Designe</u>	r - Plate G	<u>irder</u>		Input Field Idsheet Status Field
2	CONTROL OF		Design Re	sult Summary			dsheet Calculated Field
3 4	Bolts Arrangement	Bolt Rows (Per Side)	Total Bolts (Per Side)	<u>sati sati na y</u>			DDIFY THIS SHEET
5	Top Flange	4	12				
7	Web	2	26				
8	Bottom Flange	4	24				
9 10		Gage - Bolts (in)	Edge Distance (in)	Pitch - Bolts (in)	End Distance (in)	Gage - Bolt Groups (in)	Pitch - Bolt Groups (in)
11	Top Flange	3	2	3	1 1/2	6	3 3/4
12	Web	3	2	5 1/8	1 1/2	4 3/4	DNA
13	Bottom Flange	4	2	3	1 1/2	6	3 3/4
14 15 16	<u>Splice Plate Dimensions</u>	Thickness (in)	Width (in)	Length (in)			
17	Top Flange - Outer	5/8	16	18 3/4			
18	Top Flange - Inner (Each)	11/16	7	10 0/ 1			
19	Top Filler	0	0	0			
20	Web	3/8	14 3/4	64 1/2			
21	Web Filler	0	0	0			
M	Bottom Flange - Inner (Each)	7/8 ign Result Summary 🗸	8 Design Check Summary	🖌 Flange Splice Design	n 🖌 Web Splice Design		[] ◀

Steel Bridge Suite

- NSBA Splice
 - 8th Edition AASHTO LRFD
 - Plate Girder Bolted
 Splice Design Tool

NSBA Overview

What We Do

- We're out in the Industry
- Bridge Forums
- AASHTO Collaboration Meetings
- Industry Meetings and Trade Shows
- Office/Site visits
- •We work in close collaboration with the FHWA and AASHTO.
- Coauthor with AASHTO on the AASHTO/NSBA Collaboration documents.
- Major contributor to the FHWA's *Steel Bridge Design Handbook*.

•We maintain an ever expanding library of publications and white papers.

Resources for Designers

Resources for Engineers

What We Provide

• The NSBA maintains a growing list of

•technical resources to aid in making steel bridges more economical and constructible.

- Design support strategies
- Free software
- Design Handbook, AASHTO/NSBA collaboration documents
- Technical white papers
- Modern Steel Construction Articles
- New steel bridge technology in the marketplace
- Material availability
- Existing conceptual study library
- Basic raw material price info

•Both updated to AASHTO 8th Edition

NSBA/AISC Technical Resources

- Practical Steel Tub Girder Design
- A Fatigue Primer for Structural Engineers
- Moments, Shears, and Reactions
- Bolted Field Splices

Steel Bridge Design Support

AASHTO/NSBA Steel Bridge Collaboration G 12.1 - 2003

Guidelines for Design for Constructibility

AASHTO/NSBA Steel Bridge Collaboration

Understanding which steel bridge elements are fracture critical members will provide the required protection while saving on in-service inspection.

ONE OF THE MOST NOTEWORTHY bridge failures in the United States occurred in 1967, when the Point Pleasant

the United States occurred in 1967, when the Point Presant Bridge over the Ohio River (also known as the Silver Bridge) collapsed, resulting in 46 deaths. The collapse was due to brittle fracture of one of the cychars

i ne couspse was use to ornitie fracture of one of the eyeband blat formed the suspension system of the bridge. The subse-quent failure investigation revealed that the fracture was due quent tailure investigation revealed that the rescure was one to brittle propagation of a tiny crack in the cyclar. Because the fracture toughness of the cyclar was extremely low, a relatively small crack led to a brittle fracture of the cyclar, which in turn

small crack led to a brittle tracture of the eyenar, which in turn led to the collapse of the bridge. This collapse was the catalyst for many changes in mate-rial specifications, design, fabrication and shop inspection of nal specifications, design, fabrication and shop inspection of tatel bridges. These requirements are codified in the AASHTO Bridge Design Specifications and the AASHTO/AAWS D1.5 Bridge Bridge Design Specifications and the ARAFT COAVE DATA to the Welding Code (AWS) and are applied to tension members whose fracture could lead to bridge collapse. (Another bridge insitracture could lead to bridge collapse. (Auother proge met-dent--the failure of a pin-and-hanger assembly, which trig-gered the collapse of one span of the Mianus River Bridge in gered the collapse of one span or the station access armse in 1983—served as the impetus for enhanced field inspection re-

quirements for these same members.)

The Three-Legged Stool

redundant tension members that occurred on a true members, which may be either entirely (e.g., which members) or partially (e.g., a flexural member) in tension because known for the entire state of the entire entire state of the entire state of the entire state of the entire entire state of the entire st Gote of reserve Regulations (250-R050 - Droges, attactures an Hydraulics) as "a steel member in tension, or with a tensio Today, a total fracture control plan (FCP) is often illustrated Today, a total fracture control plan (FCP) to otten numerates as a three-legged stool, where each leg is made up of a part of the plan, as illustrated in Figure 1. (Since the introduction of

ARE YOU SURE THAT'S FRACTURE CRITICAL? BY ROBERT J. CONNOR, PH.D., KARL FRANK, P.E., PH.D., BIL MCELENEY AND JOHN YADLOSKY, P.E.

bridge crossings

Figure 1 - The three "legs" of a total fracture control plan for bridges.

developed in response to failures (i.e., brittle fractures) in non-

oeveropen in response to natures (i.e., oritue tractures) in non-redundant tension members that occurred in the 1970s. Such

It is essential to understand that the FCP was specifically

Steel Bridge Design Handbook

- 1. Bridge Steels and their Mechanical Properties
- 2. Steel Bridge Fabrication
- 3. Steel Bridge Shop Drawings
- 4. Structural Behavior of Steel
- 5. Selecting the Right Bridge Type
- 6. Stringer Bridges: Making the Right Choices
- 7. Loads and Load Combinations
- 8. Structural Analysis
- 9. Redundancy

Steel Bridge Design Handbook

Bridge Steels and Their Mechanical Properties Publication No. FHWA-JF-12-052 - Vol. 1

Steel Bridge Design Handbook

- 10. Limit States
- 11. Design for Constructability
- 12. Design for Fatigue
- 13. Bracing System Design
- 14. Field Splice Design
- 15. Bearing Design
- 16. Substructure Design
- 17. Bridge Deck Design
- 18. Load Rating of Steel Bridges
- 19. Corrosion Protection of Steel Bridges

Steel Bridge Design Handbook

- 20. 3-span Straight Steel I-Girder Bridge
- 21. 2-span Straight Steel I-Girder Bridge
- 22. 2-span Straight Steel Wide-Flange Beam Bridge
- 23. 3-span Straight Steel Tub-Girder Bridge
- 24. 3-span Curved Steel I-Girder Bridge
- 25. 3-span Curved Steel Tub-Girder Bridge

• http://www.fhwa.dot.gov/bridge/

• Span to Weight Charts

•Bridge Weight (psf) x Bridge Area (sq-ft) x Historical Cost

- Span to Weight Charts
 - Used during preliminary design phase.
 - Evaluation alternative structures.
 - Quickly determine relative costs.

National Steel Bridge Alliance Continuous Span Standard Solutions

- Continuous Span Standards
 - Center Span: 150 ft 300 ft (15 foot increments).
 - End Spans: 78% of center span.
 - Girder Spacing: 7'-6 through 12'-0.
 - Homogeneous and hybrid solutions.
 - Web depth to suit material efficiency.
- 88 Unique Steel Solutions.

Continuous Span Standards

- Assist engineers during the TS&L phase
 - Flange plate sizes and lengths
 - Web plate sizes and lengths
 - Diaphragm spacing
 - Stiffener locations
 - Girder weights
 - Shear connector spacing
 - Steel DL and Total DL camber tables

NSBA/AASHTO Collaboration Groups

- Includes participation from DOT's, consultants, owners, fabricators, contractors and inspectors.
- Meet several times during the year.

Task Groups

- TG 1 Detailing
- TG 2 Fabrication Specification
- TG 4 QA/QC
- TG 8 Coatings
- TG 10 Erection
- TG 11 Steel Bridge Design Handbook
- TG 12 Design for Economy and Constructability
- TG 13 Analysis of Steel Bridges
- TG 15 Data Modeling for Interoperability
- TG 16 Orthotropic Deck Panels

NSBA/AASHTO Collaboration Groups

Mission:

... provide a forum where professionals can work together to improve and achieve the quality and value of steel bridges through standardization of design, fabrication and erection.

- Specifications and Guidelines
 - Specifications:
 - Written in "spec language"
 - Can be adopted as a contract document
 - Guidelines:
 - Written as a reference
 - Consensus of the steel industry

NSBA/AASHTO Collaboration Groups

Documents

- Shop Drawing Approval Review/Approval Guidelines (G1.1-2000)
- Guidelines for Design Details (G1.4-2006)
- Guidelines for Resolution of Steel Bridge Fab. Errors (G2.2-2016)
- Steel Bridge Bearing Design and Detailing Guidelines (G9.1-2004)
- Guidelines for Design for Constructability (G12.1-2016)
- Guidelines for Steel Girder Bridge Analysis (G13.1-2014)
- Specification for Application of Thermal Spray Coatings (S8.2-2017)
- Steel Bridge Fabrication Guide Specification (S2.1-2018)

Right Information at the Right Time

•Impact of Decisions

•High impact decisions are often made when minimal relevant information is available...

•Available Information

•Project Timeline

Right Information at the Right Time

•Impact of Decisions

•Project Timeline

Modern Steel Construction

- Monthly publication for steel construction in the US
- Generally at least one bridge article each month
- Submit it to: <u>www.aisc.org/bridgeideas</u>

Circulation $= 60,000$						
68%	Engineers					
15%	Architects					
8%	Fabricators					

A Bridge FORWARD

Wind, fatigue, field splice, stud spacing and bolted connection design changes are among the several updates affecting steel bridges in the new edition the AASHTO *LRFD Bridge Design Specifications*.

Anthony Peterson peterson@aisc.org 515-499-2029

www.steelbridges.org

solutions@aisc.org

www.aisc.org