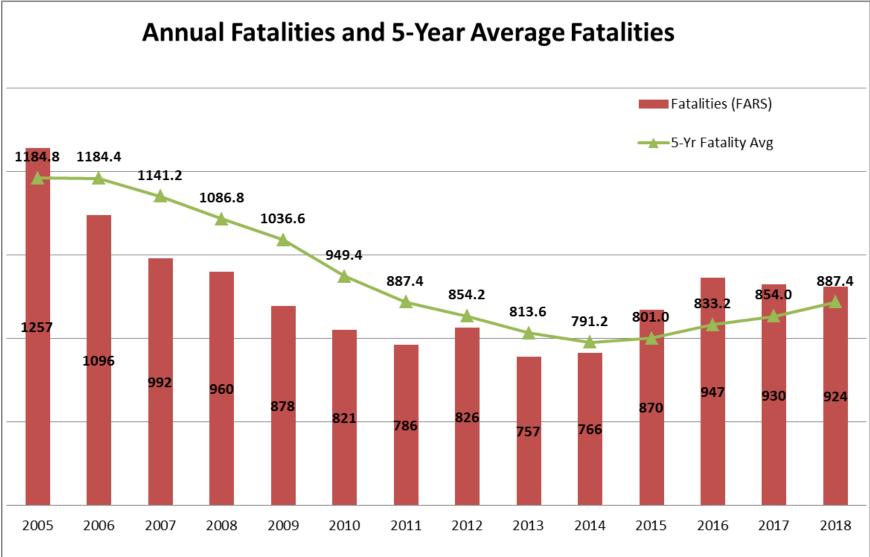


Helpful Tools for Benefit-Cost Analysis

Ray Shank, P.E., MoDOT Traffic Safety Engineer
TEAM Conference
March 15, 2019


What If Overnight...

18,000 more miles of shoulders and rumbles

Major Road Example

- 34,000+ miles of state-maintained roads
 - 5,600 miles considered major roads

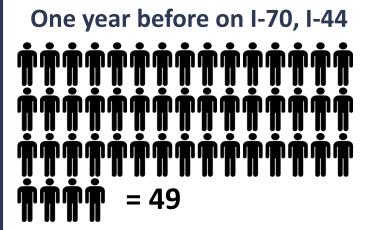
	Major	Minor
Roadway Miles	5,600	27,000
Miles Traveled	80%	20%
Fatalities	53%	47%

- Over half of state-system fatalities were occurring on less than 20% of the system.
 - Focus on major roads.

Source: Missouri DOT – Based on 2005 Data

Systemic Improvements MADOT

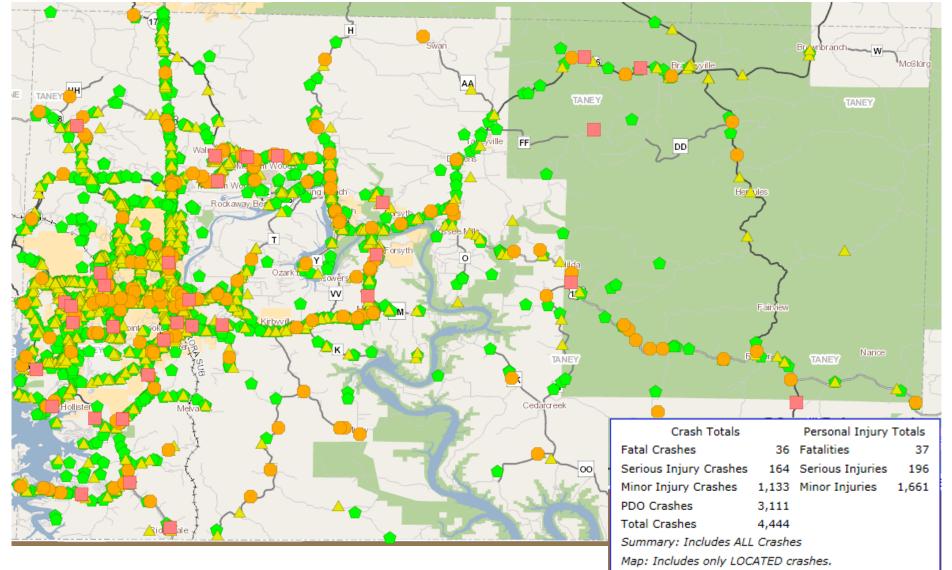
- Paved shoulders
- Rumble stripes
- Bigger, brighter signs
- Increased pavement marking
- Delineation



Guard Cable

I-70 and I-44 accounted for over 80% of cross-median fatalities

Data Driven Safety Analysis



Source: FHWA

Crash Statistics Map

Traffic Safety Lists

Horizontal Curve Analysis

Shoulder Analysis

Expressway Intersection Analysis

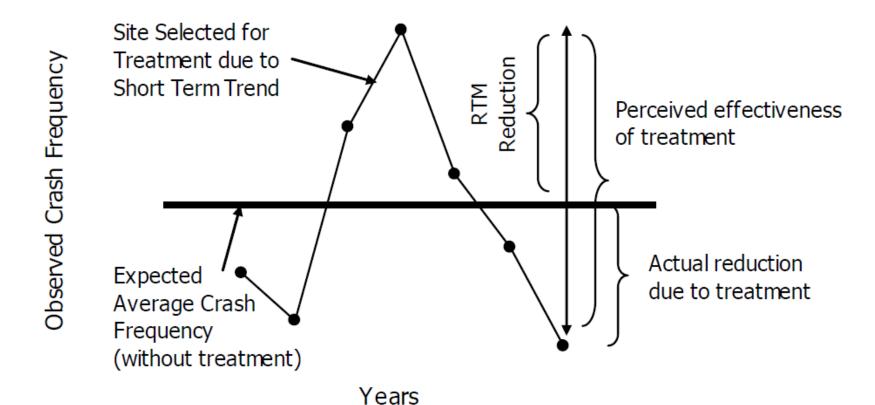
Wet Crash Analysis

Crossed Centerline Analysis

High Severity Analysis

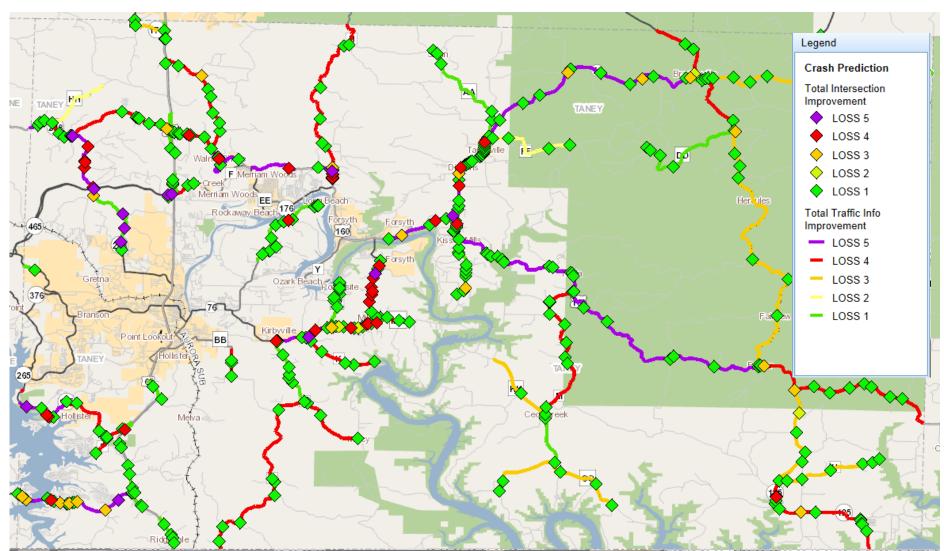
Unrestrained Analysis

Impaired Analysis


Highway Safety Manual Spreadsheets

General Information			Location Information							
Analyst	John Smith				Roadway	0				
Agency or Company	ABC Company				Roadway Section	0	0			
Date Performed	05/12/11				Jurisdiction	0	0			
Segment for Analysis	Segment 1				Analysis Year	2011	2011			
Input Data					Site Cor	Base Conditions				
Roadway type (divided / und	ivided)				Divi	Undivided				
Length of segment, L (mi)										
AADT (veh/day)		AADT _{MAX} =	89,300	(veh/day)						
Lane width (ft)						12				
Shoulder width (ft) - right sh	oulder width for divided [if differ fo	r directions of tra	avel, use ave	rage width]		8				
Shoulder type - right shoulde	er type for divided									
Median width (ft) - for divide	ed only					30				
Side Slopes - for undivided o	only				Not App	1:7 or flatter				
Lighting (present/not presen	t)				Not Pr	Not Present				
Auto speed enforcement (pre	sent/not present)				Not Pr	Not Present				
Calibration Factor, Cr			1.0	1.00						
Average Annual Crash Histor	y (3 or 5-yr average)									
Comment seasbas			KABC	Fatal and Injury Only	0.0					
Segment crashes PDO					Property Damage Only	0.0				

Regression-to-the-mean



Crash Prediction Tool

Predicted

Total: 77.78 Fatal/Injury: 25.35 Property Damage: 52.43

Expected

Total: 95.73 Fatal/Injury: 32.18 Property Damage: 63.55

Potential for Safety Improvement

Total: 17.948 Fatal/Injury: 6.829 Property Damage: 11.119

Crash Data Analysis: 2014 - 2016

Segments Export To Csv Traffic Info Seg Id Curve Id Raw Drag a column header here to group by that column Property Fatal/Injury Total Damage Potential for Potential for Traffic Info Seq Predicted Potential for County Route Begin Log End Log Predicted Total Safety Safety Fatal/Injury Safety Improvement Improvement Improvement 7 7 8.171 3.023 5.148 COLE 729858 RT B 2.134 4.743 6.2812124 2.3240486 COLE 729860 RT B 4.778 8.565 4.5993727 1.7017684 3.835 1.419 2.416 COLE MO 179 31.444 36.51 4.3713115 1.6173849 2.756 1.020 1.737 COLE 729904 RT M 5.032 8.003 5.36789 1.9861193 2.650 0.981 1.670 CALLAWAY 727485 RT AA 1.197 2.741 1.9206468 0.7106396 2.553 1.609 0.945 COLE RT W 0 2.715 1.9303944 0.7142459 729920 1.862 0.689 1.173 COLE 729902 RT M 0 5.032 3.3875169 1.2533806 1.380 0.511 0.870 CALLAWAY 727527 RT 00 0 1.619 0.8017882 0.2966617 0.821 0.304 0.517 2.477 CALLAWAY MO 94 3.617 0.6760556 0.2501406 727699 0.395 0.146 0.249 COLE 729862 RT B 8.565 8.677 0.1261511 0.0466759 0.383 0.142 0.241 Sum=40 Sum=14.8 Sum=24.240 Sum=8.969 Sum=15.271

Crash Prediction Tool

Intersections

Raw											
Orag a column header here to group by that column											
#	County	Intersection ID	Tway ID	Route	Log	Predicted Total	Predicted Fatal/Injury	Total Potential for Safety Improvement	Fatal/Injury Potential for Safety Improvement	Property Damage Potential for Safety Improvement	
	♥	♥	♥	♥	♥	♥		₹	₹	5	
	COLE	323006	7379	RT B	4.134	0.5557835	0.133	1.158	0.279	0.879	
	COLE	994049	7379	RT B	2.774	0.5434723	0.130	1.150	0.277	0.873	
	COLE	322769	7379	RT B	4.021	0.5613692	0.1	0.685	0.165	0.520	
	COLE	324542	7379	RT B	4.708	0.5408699	0.130	0.681	0.164	0.517	
	COLE	317784	7079	RT J	3.313	0.3212604	0.077	0.575	0.138	0.436	
	COLE	325582	7379	RT B	6.11	0.1575732	0.037	0.375	0.090	0.284	
	COLE	325280	7083	RT M	1.753	0.0782088	0.018	0.329	0.079	0.249	
	COLE	285398	3580	MO 179	34.103	0.1158613	0.027	0.298	0.072	0.226	
	COLE	323788	7083	RT M	5.032	0.4090743	0.098	0.236	0.057	0.179	
	COLE	323063	7083	RT M	5.236	0.2965329	0.071	0.228	0.055	0.173	
Sum=37.78 Sum=1 Sum=-6.291 Sum=-2.140 Sun									Sum=-4.152		
<							-			7	
Page 1 of 12 (119 items) [1]	<u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u>	<u>7</u> <u>10</u> <u>11</u>	<u>12</u> >					Pa	ge size: 10	

Selected count: 0

Map Selection

Additional Features

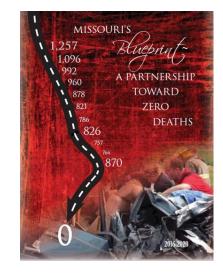
- Edit Existing Roadway Data
 - Shoulder Width / Type
 - AADT
- Scenario Analysis

Skip to main content | Site Map | Notice | Sign Up for our e-Newsletter | Home

About the CMF Clearinghouse | Using CMFs | Developing CMFs | Additional Resources

Search for: enter search term(s) In Countermeasure Name Search CMFs Learn How to I Join an interactive virtual alternates between self-live instructor-led virtual over four weeks.

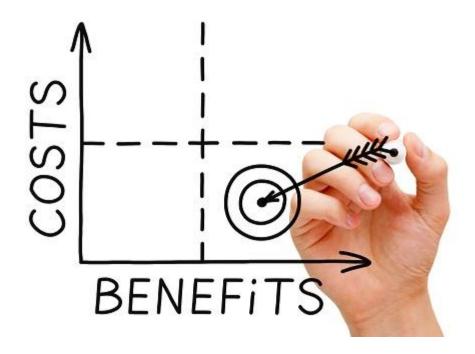
CMF Clearinghouse

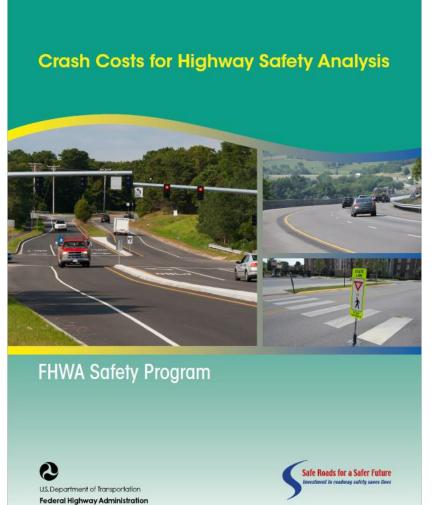

									_	
▼ Countermeasure: Install chevron signs on horizontal curves										
	Compare	CMF	CRF (%)	Quality	Crash Type	Crash Severity	Area Type	Reference	Comments	
		0.96	4	ŔŔŔŔĸ	Non- intersection	All	Rural	Srinivasan et al., 2009		
		0.94	6	******	Head on,Non- intersection,Run off road,Sideswipe	All	Rural	Srinivasan et al., 2009		
		0.84	16	***	Non- intersection	K,A,B,C	Rural	Srinivasan et al., 2009		
		0.75	25	ŔŔŔŔŔ	Nighttime,Non- intersection	All	Rural	Srinivasan et al., 2009		
		0.78	22	*****	Head on,Nighttime,Non- intersection,Run off road,Sideswipe	All	Rural	Srinivasan et al., 2009		
		0.63	37	***	All	All	Not specified	Montella, 2009		

Available Tools

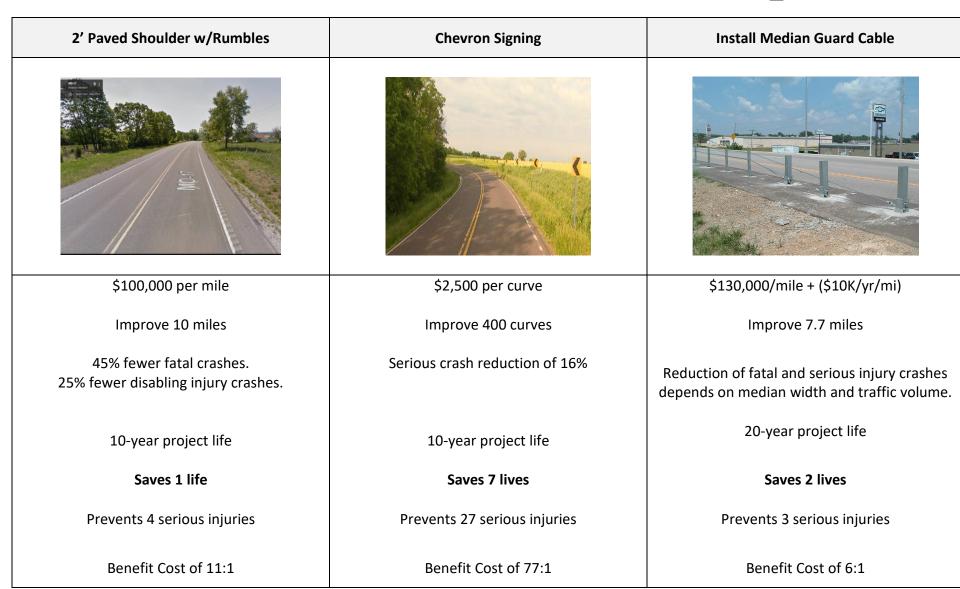
MoDOT

- MoDOT Traffic Safety Lists
- Highway Safety Manual spreadsheets
- Road Safety Assessments
- Crash Modification Factors Clearinghouse
 - www.cmfclearinghouse.org
- TMS Data Zone
 - Crash Statistics Map
 - Crash Prediction Tool




Measuring Value

- How many lives saved and serious injuries prevented?
- What is a good benefit-cost? Anything better than 1:1?



http://safety.fhwa.dot.gov

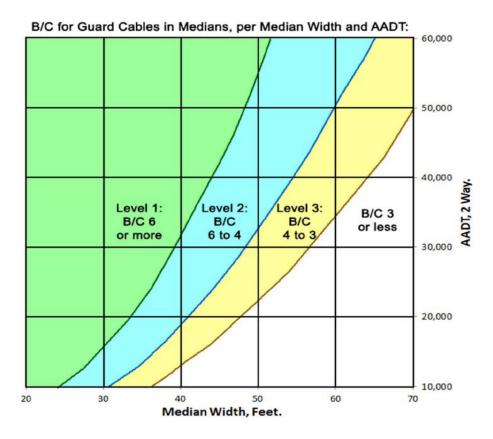
Severity	Comprehensive Crash Unit Cost (2016 dollars)
K	\$11,295,400
Α	\$655,000
В	\$198,500
С	\$125,600
0	\$11,900

Measuring Value

What can a Million Dollars in Safety Investment do?

In-Service Performance Evaluation of Median Cable Barriers in Iowa

Final Report May 2018



Sponsored by Iowa Department of Transportation (InTrans Project 15-546)

Spot Improvements

- Still a valid approach; should be balanced with systemic improvements
- Example applications: J-Turns or HFST in a curve

J-Turn Crash Results (per year basis; 19 locations)

	Total Crashes	Right- Angle Crashes	Fatal Crashes	Serious Injury Crashes	Total Fatalities	Total Serious Injuries
Before	72.8	33.6	2.6	9.0	3.4	16.8
After	54.4	3.9	0.3	2.0	0.3	2.3
Reduction	25%	88%	88%	78%	91%	86%

Road Safety Assessments

A road safety audit is a proactive, formal safety performance examination of an existing or future road or intersection by an independent and multidisciplinary team.

SAFETY BENEFIT:

10-60%

Reduction in total crashes

Source: Road Safety Audits: An Evaluation of RSA Programs and Projects, FHWA-SA-12-037; and FHWA Road Safety Audit Guidelines, FHWA-SA-06-06.

MoDOT

CONDUCTING AN RSA

Identify project

Select RSA team

Conduct start-up meeting

4 re

Perform field reviews Conduct analysis and prepare report

Present findings to project owner

gs to Prepare formal (

Prepare Incorporate formal findings

The Right Solution

- Be diligent. Let data lead you to the answer.
- Goal: Maximum reduction in fatalities and serious injuries

Considerations

- You only have so much money.
- Data driven analysis doesn't have to be complicated.
- Data driven analysis isn't a promise.
- Traffic and roadway data matters (not just crash data).
- What's best for one region may not be best for another.
- Be critical of a B/C less than 6:1 (using updated crash costs).
- Consider maintenance costs

Access to TMS

- TMS DataZone Website:
- Available to external customers: http://datazone.modot.org/
- Contact Information:
 - Ray Shank
 - **•** (573) 526-4293
 - raymond.shank@modot.mo.gov

FHWA Proven Safety Countermeasures

ROADWAY DEPARTURE.....

1. EnhancedDelineation and Friction for Horizontal Curves

2. Longitudinal Rumble Strips and Stripes

3. SafetyEdge_{sm}

4. Roadside Design Improvements at Curves

5. Median Barriers

PEDESTRIANS/BICYCLES.....

13. Leading Pedestrian Intervals

14. Medians and Pedestrian Crossing Islands in Urban and Suburban Areas

15. Pedestrian Hybrid Beacons

16. Road Diets/Reconfigurations

17. Walkways

Source: FHWA

FHWA Proven Safety Countermeasures

INTERSECTIONS. .

6. Backplates with Retroreflective Borders

7. Corridor Access Management

8. Left-and Right-Turn Lanes at Two-Way Stop-Controlled Intersections

9. Reduced Left-Turn Conflict Intersections

10. Roundabouts

11. Systemic Application of Multiple Low-Cost Countermeasures at Stop-Controlled Intersections

12. Yellow Change Intervals

CROSSCUTTING

18. Local Road Safety Plans

19. Road Safety Audits

20. USLIMITS2

Source: FHWA