

ZouSim Transportation Simulators: Virtual Testing of Designs & Construction

TEAM Conference 2019

Carlos Sun, Henry Brown, Praveen Edara

Zhu Qing, Sandy Zhang, Michael Schoelz, Jacob Kaltenbronn, Joe Reneker

University of Missouri

Outline

- Introduction
- ZouSim Multimodal Simulators
- Examples of Multimodal Simulator Applications
- Networking Simulators via Federation
- Conclusion
- Collaboration & Service

Introduction

Who needs a simulator?

If cars need a simulator, why not people?

Why Use Simulators

- Minimal risk compared to field testing in live traffic
- Cost-efficient build in the virtual world vs. paving or pouring concrete
- Flexible everything is adjustable, e.g., geometric design, traffic, signal timing, weather, lighting
- Controllable, repeatable each human subject experiences identical conditions
- Use post-simulator surveys to obtain additional feedback
- Investigate future technologies, e.g. autonomous vehicles

Science Behind Simulator Validity

- When similar patterns of behavior are observed
 - in both a simulator and in the field
 - and with similar differences among individuals
 - (Underwood et al. 2011)

UNIVERSITY of MISSOURI

Human Subject Studies

- Institutional Review Board (IRB) (21 CFR §56)
- Review of research protocol
- Assessment of risks to subjects
- Mitigation of risks
- Informed consent
- Protection of privacy of subjects
- Data management/protection plan

ZouSim Multi-Modal Simulators

Trucking, Driving, Walking, Wheeling, Bicycling

Multimodal Simulator Development

Trucking Simulator

- Based on Volvo semi-tractor cab
- Force feedback driving wheel
- Engine vibration generator
- Up to 6 104" screens for 360 degrees coverage
- Calibrated by CDL- licensed trucker

Driving Simulator

 Based on Toyota Corolla sedan body

of MISSOURI

- Automatic transmission
- Force feedback driving wheel
- Turn signals
- Engine vibration generator
- Up to 6 104" screens for 360 degrees coverage

Walking Simulator

Based on curved manual treadmill

UNIVERSITY of MISSOURI

- MPU-9250 motion tracking microcontroller
- 3-axis gyroscope, accelerometer, and magnetometer
- Step tracking algorithm using gradient detection
- I2C and serial communications

Wheeling Simulator

- Functional Jazzy Pride wheelchair
- Motion control via typical wheelchair controller
- Calibrated by wheelchair user

UNIVERSITY of MISSOURI

Multimodal Simulator Development

Bicycling Simulator

Based on TREK 800 bicycle, 7 gears

of MISSOURI

- Custom speed measurement
 circuit using dynamo + analog to-digital converter
- Laser steering tracking
- Brake measurement using analog-to-digital converter

Multimodal Simulator Application

Driving Simulator – J-Turn Design Factors

Geometric design

- Mode: Full Deceleration Lane Only (DF) or ½ Acceleration Lane + ½ Deceleration Lane (AD)
- U-turn Spacing: 1000 ft. or 2000 ft.
- Traffic Volume

Driving Simulator – J-Turn Design Factors

• J-turn Signs

Directional Signs (DR)

Driving Simulator – J-Turn Design Factors

Driving Simulator – J-Turn Design Factors

Examples of simulator performance measures

- Time-to-Collision (TTC): "no acceleration lane" had 66.3% more safety-critical TTC values as compared to the acceleration/deceleration configuration (p = 0.02)
- U-turn spacing: 1000 ft length had 31.9% more safety-critical TTC events than 2000 ft length

Driving Simulator – Automatic Flagger Assistance Device

Driving Simulator – Automatic Flagger Assistance Devices

- AFADs lowered vehicles approach speed significantly
- AFADs increased the full stop distance behind AFADs
- AFADs with CMS produced lower intervention rates than the flagger

Driving Simulator – Automatic Flagger Assistance Devices

Conclusions

- AFADs were more effective than human flaggers in terms of stopping distance and speed
- Drivers preferred AFADs over human flaggers

Wheeling Simulator – Airport Wayfinding Accessibility

ACRP Research

- Evaluate new assistive technologies
- Better understand / help wheelchair users
- Enhance airport accessibility

Wheeling Simulator – Airport Wayfinding Accessibility

Virtual airport model

- Virtual airport modeled on STL airport
- Travel paths of similar complexity
- Simulator Study
- MU Institution Review Board approved
- human subject trials (30 participants)

Bicycling Research Examples

- FHWA experimentation
- No current MUTCD standard
- Wayfinding signage/markings
- Detection markings

Federated Simulators

Multiple Modes Interacting Together in Virtual World

Advantages

- More realistic context
- A broad range of human behavior
- Multiple conflict situations

UNIVERSITY of MISSOURI

- Communication and interaction between road users
- Decision-marking process

Federated Simulators Development Simulation Engine

AutoCAD Design + 3D Modeling + Unity Platform (C#) ● 🗣 S 💢 🔄 = Center @ Global Layers Tall C Game 7 Scripts

Federated Simulators Development Simulation Engine

Unity multiplayer High Level API Low Level API Transport / Configuration Messaging & Serialization Connection / Reader / Writer **Connection Management** NetworkClient / NetworkServer **Object state & Actions** NetworkIdentity / NetworkBehaviour **Object Life-Cycle** NetworkScene / ClientScene Game Control NetworkManager **Player Control NetworkLobbyManager** NetworkTransform **Engine Integration** NetworkAnimator NetworkProximityChecker

Federated Simulators Development

The integration of different simulators into a real-time interoperable virtual environment

Federated Simulators Application Autonomous Vehicle-Pedestrian Interaction

UNIVERSITY of MISSOURI

Federated Simulators Application

Autonomous Vehicle-Pedestrian Interaction

External Display

Federated Simulators Application

Autonomous Vehicle-Pedestrian Interaction

Test Scenarios

Don't walk

Federated Simulator Application

Autonomous Vehicle-Pedestrian Interaction

Pedestrian simulator view

Federated Simulator Application

Autonomous Vehicle-Pedestrian Interaction

Car simulator view

Federated Simulator Application

Autonomous Vehicle-Pedestrian Interaction

Results

30 participants

- Eye tracking results
- Response time
- Number of critical events

UNIVERSITY of MISSOURI

Results

- Text over graphic
- External display over humandriven vehicle
- Prefer placement in front not on windshield

Federated Simulators Simultaneous Trucking and Driving

Autonomous Truck Platoon Research

Truck Display Alternatives

How will drivers react to track platooning? What's the most effective way of communicating truck platooning?

UNIVERSITY of MISSOURI

Truck Platoon Communications Results

- No communications performed worst
- Drivers prefer text display to graphics
 - Time to first reaction
 - Gap length at lane change
 - Time to collision
 - Driver survey preference
- Education about truck platooning changed behavior
 - Many drivers not currently familiar with autonomous vehicles or truck platooning

UNIVERSITY of MISSOURI

Conclusions

Multimodal simulators useful as a testbed for different applications

- Innovative traffic control devices
- Alternative geometric design
- Signage and pavement markings
- Assistive technology
- Autonomous/connected vehicles

Federated simulators

- Integrating multiple modes
- AR/VR technology
- Cognitive, emotional, and behavior analyses

Beyond Research -> Service

- Public service announcement for texting and driving – Missouri Coalition for Roadway Safety
- STEM outreach K-12, Boy Scouts, underrepresented minorities

The Future Could a Bird (e-scooter) simulator be next???

Currently under development