

The Science You Build On.

FINANCIAL AND SCHEDULE BENEFITS OF PROJECT-SPECIFIC LOAD TESTING

109th Annual TEAM Conference Matthew R. Glisson, PE

Introduction

- Foundation design process
- I-35W Bridge Replacement
- TH 610
- Conclusions

Foundation Design Process – Idealized!

- Structure need identified
- Preliminary structure design
- Subsurface exploration
 - Design-phase load test
- Final design
- Construction
 - Construction-phase load test

Project Locations

(©Google Earth 2016, 2018; MnDOT 2016)

I-35W Bridge – Collapse

I-35W Bridge – Collapse

I-35W Bridge – Design

- Twin bridge replacement
- 125-year design life
- Overall length of 1,223 feet (373 m)
- Combined width of 176 feet (54 m)
- Foundation
 - Driven H-piles
 - Drilled shafts

I-35W Bridge – Design

I-35W Bridge – Design

I-35W Bridge – Subsurface Conditions

- Primarily bedrock
- Artesian conditions
- Environmental challenges from previous development

I-35W Bridge – Preliminary Shaft Design

- Rock Quality Designation (RQD) varied from 0% to 97%
- Unconfined compressive strength varied from 40 to 2,100 psi

	Geotechnical Unit Resistance (ksf)				
	Side Shear	End Bearing	Diameter (inches)		
2 and 3	0 E to 10	60 to 150	84		
4	0.5 to 10	60 (0 150	96		

I-35W Bridge – Load Test

- Test and method shaft at Pier 3
- 78-inch-diameter, 39foot-long, rock socket

I-35W Bridge – Load Test

- Two-level, three-stage, bidirectional load test
 - 1. Upper assembly closed, lower assembly pressurized
 - 2. Upper assembly pressurized, lower assembly open
 - 3. Upper assembly pressurized, lower assembly closed

I-35W Bridge – Load Test

I-35W Bridge – Unit Resistance Summary

	Nominal Unit Resistance (ksf)			
Design Stage	Side Shear	End Bearing		
Initial	0.5 to 10 ksf	60 to 150 ksf		
Test Shaft Design	2 to 8 ksf	150 ksf		
Final (Test Shaft Actual)	2 to 40 ksf	90 ksf		

- 400 to 2,500 percent increase in side shear resistance for more-competent sandstone
- End bearing resistance agrees with design estimates

I-35W Bridge – Final Shaft Design

	Pier 2	Pier 3	Pier 4
Initial Design Diameter (inches)	84	84	96
Final Design Diameter (inches)	78	90	90
Initial Design Socket Length (feet), overall / more-competent	136 / 68	124 / 41	215 / 171
Actual Socket Length (feet), overall / more-competent	54 / 22	50 / 23	80 / 16

I-35W Bridge – Final Shaft Design

Lesscompetent sandstone

Morecompetent sandstone

I-35W Bridge – Cost Comparison

- Drilling cost of \$45 per cubic foot in both soil and rock
- Cost of initial design: \$15,162,976
- Cost of final design:
 - Testing: \$583,000
 - Construction: \$7,726,612
 - Total: \$8,309,612
- Net savings resulting from testing: \$6,853,364

I-35W Bridge – Foundation Support Cost

 Testing resulted in total support cost savings of \$17.81 per utilized kip of support

I-35W Bridge – Time Savings

- Initial design length (3,114 ft) actual length (836 ft) = 2,278 feet of less drilling in more-competent rock
- Observed drilling rate of 1 to 4 feet/hour in more-competent rock means initial design would have required an additional 570 to 2,278 hours (23 to 95 days) of drilling

TH 610 Design

TH 610 – Subsurface Conditions

TH 610 – Foundation Design

		Blow	Friction				
Soil		Count,	Angle, f	Cohesion, c			
Туре	Consistency	N ₆₀ (bpf)	(deg.)	(psf)	β	N _t	
Lean Clay (CL [*])	Soft	2 - 4	-	250 - 500	0.15	3	
	Firm	5 - 8	-	750 - 1,200	0.19	8	
	Stiff	9 - 15	-	1,500 - 2,500	0.20 - 0.29	14 - 19	
	Very Stiff	16 - 30	-	2,500 - 4,500	0.30 - 0.35	25 - 30	
	Hard	31 - 60	-	4,500 - 9,000	0.36 - 0.40	30 - 33	
	Very Hard	61+	-	10,000	0.41 - 0.50	37 - 40	
Poorly Graded	Very Loose	0 - 4	28 - 29	-	0.15 - 0.20	15 - 20	
	Loose	5 - 10	30 - 31	-	0.21 - 0.25	20 - 30	
	Medium	11 17	32 - 33	-	0.26 - 0.39	30 - 45	
	Dense	11 - 1/					
Sand (SP/SP- SM*)	Medium	10 24	33 - 34	-	0.40 - 0.52	45 - 60	
	Dense	10 - 24					
	Dense	25 - 30	35	-	0.53 - 0.59	60 - 75	
	Dense	31 - 50	36 - 38	-	0.60 - 0.75	75 - 120	
	Very Dense	51+	38 - 40	-	0.76 - 0.90	120 - 150	
*Classification based on ASTM D2487 (2011).							

Beta method, modified by experience

TH 610 – Pile Testing

- Closed-end pipe (CEP) piles
 - Diameter: 12 ¾-inch
 - Wall thickness: ¼-inch
- High-strain dynamic testing
 - Initial drive and restrike
 - Case method and wave matching using CAPWAP

TH 610 – Pile Testing

Test results versus prediction

- Total bias of 0.81 for initial and 1.22 for restrike
- Side resistance bias of 0.83 and 1.56

TH 610 – Length Comparison

TH 610 – Costs

TH 610 – Costs

- Total design length less installed length is 13,548 ft
- Assume \$30/ft for savings of \$406,440
- High-strain dynamic testing fee \$51,584
- Estimated total savings of \$354,856
- For average pile length, saved approximately 28 days of driving

TH 610 – What does it mean?

- High-strain dynamic testing is more accurate than static analysis – maybe
 - Experience in static models
 - Over-estimate length for bidding
- Can't compare with lengths for formula or static load test

TH 610 – Conclusions

- Empirical methods are inaccurate, even with experience
- Restrike testing results in higher nominal resistance than initial-drive testing
- Foundation support cost analysis during design won't have all the information
- Foundation support cost analysis postconstruction is also difficult with driven piles

I-35W Bridge – Summary

- Load testing cost \$1.52 per kip of utilized support
- Increased side shear resistance by 400 to 2,500 percent
- Testing saved \$17.81 per kip of utilized support and between 23 and 95 days of drilling

Both Projects – Conclusions

- Initial designs based on empirical values can be conservative
- Construction control with testing can be expensive, which can lead to easy dismissal
- Support cost provides a method of perspective

Both Projects – Conclusions

- Time-savings is important consideration that is not part of support cost
- Savings from test can be many times the total of testing cost

Acknowledgements

FLATIRON MANSON

U.S. Department of Transportation Federal Highway Administration

Based on papers published and presented at IBC 2017 and GeoCongress 2017

Questions and Thank You!

