

Presentation for 2019 Annual TEAM Conference

Technology Advancements Beyond Missouri

CAV Technology Foundations & State DOT Implementation

Breakout Session #1: 9:20 AM - 10:00 AM | March 14, 2019 Presented by: Maureen Paz de Araujo, FAICP CTP CEP

International Trends: CAV Preparedness

- The Netherlands #1
 - Policy 3
 - Technology/Innovation 4
 - Infrastructure 1
 - Consumer Acceptance 2
- ◆ Japan #11
 - Policy 12
 - Technology/Innovation 7
 - Infrastructure 3
 - Consumer Acceptance 16

Source: The Countries Best Prepared For Autonomous Vehicles [Infographic], Forbes.com, December 2018.

International Trends: Preparedness Details

Overall Rank	Country	Total Score	Policy		Technology		Infrastructure		Acceptance	
			Rank	Score	Rank	Score	Rank	Score	Rank	Score
1	The Netherlands	27.73	3	7.89	4	5.46	1	7.89	2	6.49
2	Singapore	26.08	1	8.49	8	4.26	2	6.72	1	6.63
3	United States	24.75	10	6.38	1	6.97	7	5.84	4	5.56
4	Sweden	24.73	8	6.83	2	6.44	6	6.04	6	5.41
5	United Kingdom	23.99	4	7.55	5	5.28	10	5.31	3	5.84
6	Germany	22.74	5	7.33	3	6.15	12	5.17	12	4.09
7	Canada	22.61	7	7.12	6	4.97	11	5.22	7	5.30
8	UAE	20.89	6	7.26	14	2.71	5	6.12	8	4.79
9	New Zealand	20.75	2	7.92	12	3.26	16	4.14	5	5.43
10	South Korea	20.71	14	5.78	9	4.24	4	6.32	11	4.38
11	Japan	20.28	12	5.93	7	4.79	3	6.55	16	3.01
12	Austria	20.00	9	6.73	11	3.69	8	5.66	13	3.91
13	France	19.44	13	5.92	10	4.03	13	4.94	10	4.55
14	Australia	19.40	11	6.01	13	3.18	9	5.43	9	4.78
15	Spain	14.58	15	4.95	16	2.21	14	4.69	17	2.72

- ◆The Netherlands #1
 - Policy/Legislation 3
 - Technology/Innovation 4
 - Infrastructure 1
 - Consumer Acceptance 2
- United States #3
 - Policy/Legislation 10
 - Technology/Innovation 1
 - Infrastructure 7
 - Consumer Acceptance 4

Source: Autonomous Vehicles Readiness Index, KPMG International, 2018.

National Trends: CAV Testing & Deployment

- States Passed Legislation Allowing CAV Testing and/or Deployment (29)
 - Enacted Legislation (25)
 - Executive Orders (4)
 - Both Legislation and Executive Orders (4)

Source: Governor's Advisory Council on Connected & Autonomous Vehicles Executive Report, MnDOT, December 2018.

National Trends: Truck Platooning

- States Allow Truck Platooning on Public Roads (23)
 - Platooning Allowed (23)
 - Limited Commercial Deployment (4)
 - Platoon Testing Allowed (3)
 - Legislation Pending (2)

Source: Governor's Advisory Council on Connected & Autonomous Vehicles Executive Report, MnDOT, December 2018.

Connected Vehicle Pooled Fund Study

PROGRAM TO SUPPORT THE DEVELOPMENT AND DEPLOYMENT OF CONNECTED VEHICLE APPLICATIONS

- Arizona DOT
- Caltrans
- Colorado DOT
- Connecticut DOT
- Delaware DOT
- FHWA
- Florida DOT

- Georgia DOT
- Idaho DOT
- Maryland DOT
- Michigan DOT
- Minnesota DOT
- Mississippi DOT
- New Hampshire DOT

- New Jersey DOT
- New York DOT
- Ohio DOT
- Pennsylvania DOT
- Tennessee DOT
- Texas DOT
- Transport Canada

- New Jersey DOT
- New York DOT
- Ohio DOT
- Washington DOT
- Wisconsin DOT
- UVA Transportation Research Center
- Virginia DOT

Colorado | Smart 70

CDOT – PANASONIC: I-70 MOUNTAIN CORRIDOR PARTNERSHIP

Source: CDOT – Kozinski/Ford/Rice, Presentation to Transportation Commission, October, 2017.

Connected Vehicle Technology via investing in a Connected Vehicle Ecosystem pays dividends for urban and rural mobility and safety

Colorado | Vehicle Ecosystem ROAD

V2X | C-V2X CONNECTIVITY

Source: CDOT – Kozinski/Ford/Rice, Presentation to Transportation Commission, October, 2017.

Colorado | Vehicle Ecosystem ROAD

HERE | C-V2X & CLOUD-BASED **ANALYTICS**

A Partnership of CDOT, QUALCOMM, Ford Motor Company & Panasonic

Colorado | Connectivity

INTERNET OF ROADS

- Stage 1 Timeline: 2019-2022
- ◆ 14 Corridors: 500+ miles
- Ready for Automaker Rollout
- Smart Systems Approach
- Aligns with V2X timeline

Colorado | DAISy

DATA INTELLIGENCE SYSTEM (DAISY) IS A CLOUD-BASED DATA ANALYTICS PLATFORM THAT BRINGS:

- ◆ Near-term intelligence, efficiency and interoperability of existing network
- Long-term enablement of world-leading automated transportation systems

Colorado | Smart 25

MANAGED ROADWAY PILOT

- Upgrade 19 ramps along northbound I-25 in metro Denver
- Connects freeway operations to ramp metering systems for coordinated entrance of vehicles to keep interstate flowing
- Technology partnership with Australia with cloud-based traffic management; first in U.S.; reduces congestion without adding lanes

Colorado | Hyperloop One

HYPERLOOP ONE

- 2,600 Submissions
- ◆10 Routes Selected
- 4 U.S. Routes
 - Chicago Columbus -Pittsburgh
 - Cheyenne Denver Pueblo
 - Dallas Laredo Houston
 - Miami Orlando

Michigan | Infrastructure

SOUTHEAST MICHIGAN CONNECTED VEHICLE ASSETS

Michigan | Infrastructure

CONNECTED VEHICLE INFRASTRUCTURE

MDOT's CV infrastructure investments are key to creating an environment supportive of V2I testing

Michigan | Data Management

Source: Michigan Connected Vehicle Initiatives, MDOT, April 2016.

DATA USE ANALYSIS & PROCESSING PROGRAM (DUAP)

MDOT's Data Use Analysis and Processing (DUAP) program is pioneering the collection and fusion of CV data with a wide range of data sources.

Michigan | V2I Applications

TRUCK PARKING INFORMATION & MANAGEMENT

SYSTEM (TPIMS)

Michigan | V2I Applications

WORK ZONE WARNING - MANAGEMENT

Source: Michigan Connected Vehicle Initiatives, MDOT, April 2016.

Michigan | Partnerships

MOBILITY TRANSFORMATION CENTER

Source: Michigan Connected Vehicle Initiatives, MDOT, April 2016. Photo Courtesy of the University of Michigan.

Minnesota CAV Initiatives m pepartment of transportation

PUBLIC OUTREACH

- Automated Shuttle Demonstrations
- CAV Strategic Plan Outreach

Source: Governor's Advisory Council on Connected & Autonomous Vehicles Executive Report, MnDOT, 12-2018.

Minnesota | CAV Initiatives

RESEARCH AND TESTING

- Cold Weather Testing
- Connected Corridor (Trunk Highway 55) Interstate 494 to Minneapolis
- Connected Corridor (Trunk Highway 52)
 St. Paul to Rochester
- Private Industry R & D: VSI Labs, 3M's Connected Roads, Polaris CAV Technologies

Source: Governor's Advisory Council on Connected & Autonomous Vehicles Executive Report, MnDOT, December 2018.

INNOVATIVE PARTNERSHIPS

- Strategic Visioning
 - MnDOT, Hennepin County, Metropolitan Council and the McKnight Foundation to host a two-day strategic visioning workshop on automated vehicles in June 2018.
- Information Sharing
 - Minnesota County Engineers Association, Minnesota Guidestar and ITS Minnesota
- Regional and National Sharing
 - MnDOT and other state and local agencies are collaborating with other states in "pooled fund" studies to research CAV technology.
- Innovative Procurement and Ideas

Source: Governor's Advisory Council on Connected & Autonomous Vehicles Executive Report, MnDOT, December 2018.

Virginia | CV Test Beds

NORTHERN VIRGINIA

"Urban" Test Bed Features:

- High-operating capacity roadways (I-66, I-495, U.S. 29, and US 50)
- Recurring congestion
- Top 25 "crash hot spots"
- 49 roadside units (RSUs) located within Northern Virginia test bed

Source: Virginia Roads website, https://www.vtti.vt.edu/vcc/, accessed March 2019.

Virginia | CV Test Beds

VIRGINIA SMART ROADS – BLACKSBURG, VA

Smart Roads Test Bed Features:

A controlled, "laboratory" environment that allows CV applications to be developed and proven safely before they are deployed on public roadways.

• - RSU location.

Source: Virginia Roads website, https://www.vtti.vt.edu/vcc/, accessed March 2019.

Virginia | V2X Infrastructure

VCC CLOUD

- Centralized System To manage CV message traffic
- Connected Vehicles Connect to VCC Cloud via cellular or DSRC communications
- Interfaces Pull traffic, incident, weather and dynamic message sign data from VDOT data-sharing website

Source: Virginia Roads website, https://www.vtti.vt.edu/vcc/, accessed March 2019.

Virginia | V2X Infrastructure

DEDICATED SHORT RANGE COMMUNICATIONS (DSRC)

- 64 Roadside Units (RSUs) Located throughout the Northern Virginia Test Bed
- 10 Roadside Units On the Virginia Smart Roads
- 45 Arterial/Intersection RSUs Cohda MK5, located on arterials
- 19 Freeway RSUs Cohda MK5, located on the freeways

Source: Virginia Roads website, https://www.vtti.vt.edu/vcc/, accessed March 2019.

Virginia | Deployed Vehicle Fleet

sedan wiring diagram

CONNECTED VEHICLE FLEET

- Fleet of 50 Vehicles Highly instrumented light vehicles was deployed within the Northern Virginia Test Bed
- Level 2 Automation Vehicles with features such as adaptive cruise control and lane-keeping assist
- Instrumented with Data Collection Equipment - To capture video of the vehicles' automation features at work as well as driver responses

Source: Virginia Roads website, https://www.vtti.vt.edu/vcc/, accessed March 2019.

Panasonic | Communications Technology

V2X (EVERYTHING) COMMUNICATIONS

- ◆ (V2V) Vehicle to Vehicle
- ◆ (V2I) Vehicle to Infrastructure
- ◆ (V2P) Vehicle to Pedestrian

Panasonic | Vehicle Technology

ADAS (ADVANCED DRIVER ASSISTANCE SYSTEMS)

Panasonic | ITS System Integration

CONNECTED
VEHICLES V2X
COMMUNICATION
TECHNOLOGY

QUALCOMM | CAV Infrastructure

C-V2X reduces cost of infrastructure deployment

Combined RSUs and 4G/5G small cell, benefiting from cellular network densification

QUALCOMM | Connected Car Platform

Source: Accelerating C-V2X Commercialization, QUALCOMM, 2017. www.qualcomm.com .

QUALCOMM | C-V2X For ADAS

On-board intelligence: C-V2X complements other sensors

Providing higher level of predictability and autonomy

Radar

Bad weather conditions Long range Low light situations

Camera

Interprets objects/signs Practical cost and FOV

Lidar

Depth perception Medium range

Ultrasonic

Low cost Short range

Brain of the car to help automate the driving process by using:

Immense compute resources
Sensor fusion
Machine learning
Path planning

V2X wireless sensor

See-through, 360° non-line of sight sensing, extended range sensing

3D HD maps

HD live map update Sub-meter level accuracy of landmarks

Precise positioning

GNSS positioning Dead reckoning VIO

Source: Accelerating C-V2X Commercialization, QUALCOMM, 2017. www.qualcomm.com .

Conclusions

- Smart Mobility is part of the "Industrial Revolution 4.0"
- The Timeline:
 - 2019 8 Billion devices are already "connected" There are now more devices than there are people
 - 2020 20 Billion connected devices
 - 2050 "Trillions" of connected devices predicted

Conclusions

- The infrastructure in the electronics realm is already "Part of the Economy" so it is not hard to envision that:
 - The "Physical Infrastructure" and the "Electronic Infrastructure" will soon become unified into "Smart Countries" versus "Developing Countries".
- Response on all fronts (Government, Academic, Ethics and Business, etc.) is already part of the equation.
- Our profession ignores this new "Organization of Society" at great peril.

Thank You

Maureen Paz de Araujo, AICP CTP CEP Senior Transportation Planner Wilson & Company

maureen.pazdearaujo@wilsonco.com

