

Olmsted Locks and Dam – Heritage In Transportation Engineering

TEAM 2018 Conference

Presenter:

Sharon Hoffmann, P.E.

March 8, 2018

www.jacobs.com | worldwide

Olmsted Locks & Dam Replacement Project

Olmsted Locks and Dam on the Ohio River

Agenda

- 1. Overview of Inland Waterway System
- 2. Inland Waterway System Current Condition & Necessary Improvements
- 3. Ohio River Demand & Olmsted's Importance to the Nation
- 4. Olmsted Dam's Design & Innovative Method of Construction

Heritage of the U.S Inland & Intracoastal Waterways

Nation's Freight Network

Inland Waterways

- Shared by only 38 states
- Maintained by the USACE
- ~12,000 miles constitute the Commercially Active Inland and Intracoastal Waterway System
- ➢ 575 million tons of Cargo
- ▶ \$229 Billion

Alternate Transportation Mode Comparison

Federal Role Supporting Navigation

Federal Role Supporting Navigation

U.S. Department of Transportation (DOT)

- U.S. Coast Guard
 - Vessel and Navigation Safety
 - Provides Navigation Aids
 - Search and Rescue Services
- Maritime Administration
 - U.S. ports
 - Intermodal Systems
 - Domestic Shipping

Federal Role Supporting Navigation

U.S. Army Corps of Engineers (USACE)

Facilitates the safe, reliable and economically efficient movement of vessels by constructing and maintaining navigation channels and harbors, and regulating water levels on inland waterways.

JACOBS[®]

Historical Wicket Gates of the Navigable Pass

Wicket Gates of the Navigable Pass

Historical Wicket Gates of the Navigable Pass

Lock Chamber

Modern Day Improvements Lock Chambers – 600 ft to 1200 ft

Ohio River - Lock & Dam 52 Beyond Service Life

Ohio River - Lock & Dam 52 Beyond Service Life

Page 10A: Metropolis Planet, September 22, 1999

Repairing the wicket

The Lock and Dam 52 is undergoing repairs, according to Lock Master Ron Hall. In the center a missing wooden wicket can be detected. Hall said that every year repairs have to be made to the wickets, which are 20 years old. Repairs must be done, regardless of water levels.

Ohio River - Lock & Dam 53 Beyond Service Life

Upstream Guide Wall Misalignment

Ohio River – Olmsted Locks & Dam Importance to the Nation

Major Hub Connecting Mississippi, Tennessee, Cumberland and Ohio Rivers

Ohio River – Importance to the Nation

More tonnage passes this point than any other place in America's inland navigation system.

Most-used locks and dams of the inland navigation system			\$22 billion
SITE	LOCATION	RIVER	2015 TONNAGE IN MILLIONS
Lock and Dam 52	Brookport, III.	OHIO	80.8
Lock and Dam 53	Grand Chain, III.	OHIO	72.3
Soo Locks	Sault Ste. Marie, Mich.	ST. MARYS	69.6
Newburgh Lock and Dam	Newburgh, Ind.	OHIO	69.1
Smithland Lock and Dam	Hamletsburg, III.	OHIO	63.7
McAlpine Locks and Dam	Louisville, Ky.	OHIO	62.0
Cannelton Locks and Dam	Cannelton, Ind.	OHIO	61.8
Lock and Dam 27	Granite City, III.	MISSISSIPPI	60.3
John T. Myers Locks and Dam	Mt. Vernon, Ind.	OHIO	56.5
Melvin Price Locks and Dam	East Alton, III.	MISSISSIPPI	53.7

Ohio River – Importance to the Nation Locks & Dams 52 & 53 Condition & Closures

September 6 to November 10, 2017 ~ 19 days of TOTAL RIVER CLOSURE ~ 1,117 tows moving 11,574 barges DELAYED 58.83 hours ~ 3050 LOST boat days ~ \$5,000 A DAY to run a towboat ~3.4 million tons of capacity out of the system \$40+million due to delays

Ohio River – Importance to the Nation Olmsted Locks & Dam Replacement Project

Annual Economic Benefits To The Nation > \$640 Million

Operation and Maintenance Costs Reduced

Barge Traffic Will Move **Faster** Currently at 52 & 53 – 5 hours vs. New Olmsted Locks – 1 hour

Olmsted Locks & Dams - Components

Source: U.S. Army Corps of Engineers. | GAO-17-147

Olmsted Locks & Dam Timeline

Dam Method of Construction In-the-Dry vs In-the-Wet

Dam Method of Construction In-the-Dry

Red River Lock and Dam No. 4 USACE – Vicksburg District

Olmsted Dam Method of Construction Lock Construction In-the-Dry

Olmsted Dam Method of Construction Lock Construction In-the-Dry

Olmsted Dam Method of Construction Lock Construction In-the-Dry

Olmsted Dam Method of Construction In-the-Wet

Olmsted Construction Site Overview

Olmsted Construction Site Overview

Shell Set Down on River Bottom

Shell Set Down on River Bottom

Precast Yard – Shell Construction

Precast Shell Size

Precast Shell Size

ONE Pier Shell (Six total in the Tainter Gate Section)

TER OF

Precast Yard – Sill Shell Lift by Super Gantry Crane

Precast Yard – Stilling Basin Shell Lift by Super Gantry Crane

Precast Yard – Lower Pier Shell Construction

Precast Yard – Lower Pier Shell Lift by Super Gantry Crane

Cradle Transport Equipment System

Cradle Transport Equipment System

Cradle Transport Equipment System

Tainter Gate Section Construction

Pier Shell In Place - Prior to Tremie Placement

Filling the Shells with Tremie Concrete

Olmsted Dam Construction – From precast yard to river bed

Design Considerations – Load Conditions for Shell Design

- Fabrication & On-Shore Handling
- Pick-up and Transport
- Set Down In-the-Wet
- Tremie Placement
- Final Configuration Service Loadings
 - Dead Load
 - Stream Forces
 - Barge Impact
 - Gate Bay Dewatering
 - Seismic

Design Considerations – Method of Construction

- Dual role for shells: tremie form and flow surface
- Shell weight & dimensions critical for sizing marine equipment
- Localized loadings on lifted shells
- Load reversal in areas of shells
- Design for flexure and shear vs. mass concrete
- Result: stiffened plate elements, 12" to 24" thick, reinforcing on both faces, dowels for composite action with tremie infill

Olmsted Dam Tainter Gate Section Upper Pier Construction

Olmsted Dam Navigable Section Wicket Gates

Olmsted Dam Navigable Section Wicket Gates

Olmsted Locks & Dam Project – A Heritage in Transportation

Olmsted Locks & Dam Project – A Heritage in Transportation

Olmsted Locks & Dam Project – A Heritage in Transportation

Thank you!

Sharon Hoffmann

www.jacobs.com | worldwide

© Copyright Jacobs March 17, 2018